Skip to main content
Log in

Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

To quantify the effect of two potassium levels (4.5 and 9.0 mM) on salt tolerance, we conducted a solution culture experiment using salt-tolerant (Nagina) and salt-sensitive (Peto-86) Solanum lycopersicum (tomato) cultivars grown under NaCl stress (0, 75, and 150 mM). Potassium is known to minimize oxidative stress and enhance photosynthesis in salt-stressed plants. A 30-day treatment with potassium, differentially increased stomatal conductance and transpiration, decreased oxidative stress, lowered the activities of antioxidant enzymes (i.e., superoxide dismutase, catalase, and glutathione reductase), increased leaf K+ levels and the K+/Na+ ratio, and improved the membrane stability index in the salt-tolerant and salt-sensitive tomato cultivars exposed to salt stress. The salt-sensitive cultivar had significantly higher malondialdehyde (MDA) concentrations and lower antioxidant enzyme activity than the salt-tolerant cultivar. These results indicate that potassium can be used to alleviate salt-induced oxidative stress and photosynthetic limitations in tomato plants and ultimately improve survival under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Biol 531:1331–1341

    Google Scholar 

  • Amjad M, Akhtar J, Haq MA, Ahmad R, Zaid M (2014a) Characterization of comparative response of fifteen tomato (Lycopersicon esculentum Mill.) genotypes to NaCl stress. J Agric Sci Technol 16:851–862

    Google Scholar 

  • Amjad M, Akhtar J, Haq MA, Imran S, Jacobsen SE (2014b) Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk J Biol 38:208–218

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafuzzaman M, Khan MAH, Shahidullah SM (2002) Vegetative growth of maize (Zea mays) as affected by a range of salinity. Crop Res Hisar 24:286–291

    Google Scholar 

  • Azooz MM, Shaddad MA, Abdel-Latef AA (2004) Leaf growth and K+ /Na+ ratio as an indication of the salt tolerance of three sorghum cultivars grown under salinity stress and IAA treatment. Acta Agron Hung 52:287–296

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein—dye binding. Annals Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Lima JP, Ferreira-Silva SL, Viégas RA, Silveira JA (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164:591–600

    Article  CAS  PubMed  Google Scholar 

  • Chartzoulakis K, Psarras G, Vemmos S, Loupassaki M, Bertaki M (2006) Response of two olive cultivars to salt stress and potassium supplement. J Plant Nutr 29:2063–2078

    Article  CAS  Google Scholar 

  • Chen ZM, Newman I, Mendham N, Zhang G, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Func Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Chookampaeng S, Pattanagul W, Theerakulpisut P (2008) Effects of salinity on growth, activity of antioxidant enzymes and sucrose content in tomato (Lycopersicon esculentum Mill.) at the reproductive Stage. Sci Asia 34:69–75

    Article  Google Scholar 

  • Çolpan E, Zengin M, Özbahçe A (2013) The Effects of potassium on the yield and fruit quality components of stick tomato. Hortic Environ Biotechnol 54:20–28

    Article  Google Scholar 

  • Esfadiari E, Shakiba MR, Mahboob S, Alyari H, Toorchi M (2007) Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J Food Agric Environ 5:149–153

    Google Scholar 

  • Farhoudi R, Hussain M, Lee DJ (2012) Modulation of enzymatic antioxidants improves the salinity resistance in canola (Brassica napus). Int J Agric Biol 14:465–468

    Google Scholar 

  • Gomathi R, Rakkiyapan P (2011) Comparative lipid peroxidation, leaf membrane thermostability and antioxidant system in four sugarcane genotypes differing in salt tolerance. Int J Plant Physiol Biochem 3:67–74

    CAS  Google Scholar 

  • Gorham J (1984) Salt tolerance in the Triticae: K+/Na+ discrimination in some potential wheat grasses and their amphiploids with wheat. J Exp Bot 45:441–447

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plant without soil. Calif Agric Exp Sta dr No 347:39

    Google Scholar 

  • Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk J Biol 32:79–83

    Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA (2007) NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Crit Rev Biol 330:806–813

    CAS  Google Scholar 

  • Keshavkant S, Padhan J, Parkhey S, Naithant C (2012) Physiological and antioxidant responses of germination Cicer arietinum seeds to salt stress. Russ J Plant Physiol 59:206–211

    Article  CAS  Google Scholar 

  • Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim Biophys Acta 1804:929–940

    Article  CAS  PubMed  Google Scholar 

  • Liu FY, Li KT, Yang WJ (2014) Differential responses to short-term salinity stress of heat-tolerant cherry tomato cultivars grown at high temperatures. Hortic Environ Biotechnol 55:79–90

    Article  CAS  Google Scholar 

  • Lu SW, Li T, Jing J (2010) Effects of tomato fruit under Na+-salt and Cl -salt stresses on sucrose metabolism. African J Agric Res 5:2227–2231

    Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of Plant Nutrition. 5th ed, Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Miranda H (2011) Stress response in cyanobacterium Synechocystis sp. PCC 6803. Doctoral Thesis, Department of Chemistry, Umea University, Sweden

    Google Scholar 

  • Molazem D, Qurbanov EM, Dunyamaliyev SA (2010) Role of proline, Na and chlorophyll content in salt tolerance of corn (Zea mays L.). Am-Eurasian J Agric Environ Sci 9:319–324

    CAS  Google Scholar 

  • Msanne J, Lin J, Stone J, Awada T (2011) Characterization of abiotic stress responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    Article  CAS  PubMed  Google Scholar 

  • Murshed R, Félicie LL, Sallanon H (2014) Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol Mol Biol Plants 20(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • Natr L, Lawlor DW (2005) Photosynthetic plant productivity. In Hand Book Photosynthesis, 2nd ed, M. Pessarakli, C.R.C. Press, New York, USA, pp 501–524

    Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saqib ZA, Akhtar J, Haq MA, Ahmad I, Bakhat HF (2012) Rationality of using various physiological and yield related traits in determining salt tolerance in wheat. Afr J Biotechnol 11:3558–3568

    CAS  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Schimanski LJ, Koutoulis A (2002) Heterogeneity in bean leaf mesophyll tissue and ion flux profiles: leaf electrophysiological characteristics correlate with the anatomical structure. Ann Bot 89:221–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart RRC, Bewley JD (1980) Lipid peroxidation associated aging of soybean axes. Plant Physiol 65:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tijen D, Ismail T (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  Google Scholar 

  • Venkatesan A, Sridevi S (2009) Response of antioxidant metabolism to NaCl stress in the halophyte Salicornia brachiata roxb. J Phytol 4:242–248

    Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Golezani KG (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J 5:60–67

    CAS  Google Scholar 

  • Yurtseven E, Kesmez GD, Unlukara A (2005) The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agric Water Manage 78:128–135

    Article  Google Scholar 

  • Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81:291–300

    Article  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Amjad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjad, M., Akhtar, J., Murtaza, B. et al. Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Hortic. Environ. Biotechnol. 57, 248–258 (2016). https://doi.org/10.1007/s13580-016-0035-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0035-7

Additional key words

Navigation