Skip to main content

Advertisement

Log in

Improved detection of Cucumber mosaic virus coat protein (CMV-CP) in genetically modified pepper (Capsicum annuum) using a polyclonal antibody to a synthetic CP peptide

  • Research Report
  • Protected Horticulture
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Enormous economic losses caused by infection of peppers with Cucumber mosaic virus (CMV) have spurred the development of CMV-resistant peppers using genetic techniques. However, growing concern from the general public over genetically modified (GM) crops has focused attention on safety and labeling issues. In this study, we developed and optimized a qualitative and quantitative enzyme-linked immunosorbent assay (ELISA) to detect CMV-resistant GM peppers. Two types of antibodies, virion-derived polyclonal antibody (VPAb) prepared from a CMV-Fny virion-immunized rabbit and peptide-based polyclonal antibody (PPAb) prepared from rabbits immunized with a peptide fragment of CMVcoat protein (CMV-CP) (LPDSVTEYDKKLVSR) predicted from the nucleotide sequence were prepared, and their affinities were compared. Optimized ELISAs using VPAb and PPAb as the primary antibodies, respectively, were carried out to measure the level of CMV-CP in GM peppers cultivated at an officially approved facility in Korea. Color development (reflecting CMV-CP levels) was 2.5-fold higher when PPAb was used as the primary antibody compared to VPAb as the primary antibody. No statistical differences were observed among GM pepper cultivars. These results imply that PPAb has higher specificity for CMV-CP than VPAb does, and that the analytical system presented in this study can be used to evaluate the level of CMV-CP in genetically modified peppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agindotan, B.O., G. Thottappilly, A. Uwaifo, and S. Winter. 2003. Production of monoclonal and polyclonal antibodies against a Nigerian isolate of banana streak virus. Afr. J. Biotechnol. 2:171–178.

    Article  CAS  Google Scholar 

  • Bang, S.N., Y.S. Jung, S.J. Eom, G.B. Kim, K.H. Chung, G.P. Lee, D.Y. Son, K.W. Park, J.S. Hong, K.H. Ryu, and C. Lee. 2011. Assessment of the cucumber mosaic virus coat protein by expression evaluation in a genetically modified pepper and Esherichia coli BL21. J. Food. Biochem. 36:432–440.

    Article  Google Scholar 

  • Blystad, D.R. 2014. Diagnosis of plant viruses with emphasis on the ELISA-method. http://apfmo.org/dokument/Ana/Mostar_sept%202009.pdf. Accessed 10 April 2014.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of proteindye-binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brent, P., D. Bittisnich, S. Brooke-Taylor, N. Galway, L. Graf, M. Healy, and L. Kelly. 2003. Regulation of genetically modified foods in Australia and New Zealand. Food Control 14:409–416.

    Article  Google Scholar 

  • Cai, W.Q., R.X. Fang, H.S. Shang, X. Wang, F.L. Zhang, Y.R. Li, J.C. Zhang, X.Y. Cheng, G.L. Wang, and K.Q. Mang. 2003. Development of CMV- and TMV-resistant transgenic chili pepper: field performance and biosafety assessment. Mol. Breed. 11:25–35.

    Article  Google Scholar 

  • Castro, S.M., J.A. Saraiva, F.M.J. Domingues, and I. Delgadillo. 2011. Effect of mild pressure treatments and thermal blanching on yellow bell peppers (Capsium annum L.). LWT-Food Sci. Technol. 44:363–369.

    Article  CAS  Google Scholar 

  • Chen, Z.L., H. Gu, Y. Li, Y. Su, P. Wu, Z. Jiang, X. Ming, J. Tian, N. Pan, and L.J. Qu. 2003. Safety assessment for genetically modified sweet pepper and tomato. Toxicology 188:297–307.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M.F. and A.N. Adams. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475–483.

    Article  CAS  PubMed  Google Scholar 

  • Cunha, M.G., T.S. Medina, S.G. Oliveira, A.N. Marinho, M.M. Povoa, and A.K.C. Ribeiro-dos-Santos. 2009. Development of a polymerase chain reaction (PCR) method based on amplification of mitochondrial DNA to detect Plasmodium falciparum and Plasmodium vivax. Acta Trop. 111:35–38.

    Article  CAS  PubMed  Google Scholar 

  • Hidayat, S.H., D. Haryadi, and E. Nurhayati. 2009. Use of serologicalbased assay for the detection of pepper yellow leaf curl Indonesia virus. Plant Pathol. J. 25:328–332.

    Article  CAS  Google Scholar 

  • Holdenrieder, S., P. Stieber, L.Y.S. Chan, S. Geiger, A. Kremer, D. Nagel, and Y.M. Dennis. 2005. Cell-free DNA in serum and plasma: Comparison of ELISA and quantitative PCR. Clin. Chem. 51:1544–1546.

    Article  CAS  PubMed  Google Scholar 

  • Holst-Jensen, A., Y. Bertheau, Md. Loose, L. Grohmann, S. Hamels, L. Hougs, D. Morisset, S. Pecoraro, M. Pla, M.Vd. Bulcke, and D. Wulff. 2012. Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnol. Adv. 30:1318–1335.

    Article  CAS  PubMed  Google Scholar 

  • Janknecht, R., G. Martynoff, J. Lou, R.A. Hipskind, A. Nordheim, and H.G. Stunneberg. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc. Natl. Acad. Sci. USA. 88:8972–8976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen, T.H., G. Ajjouri, K.J. Handberg, M.J. Slomka, V.J. Coward, V.J. Cherbonnel, L. Peter, and P.H. Jorgensen. 2013. An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies. Acta Vet. Scand. 55:84.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kazutoyo, M., C.O. Andrew, O.V. Muratova, L.H. Miller, A. Saul, and C.A. Long. 2008. Development and characterization of a standardized ELISA including a reference serum on each plate to detect antibodies induced by experimental malaria caccines. Vaccine 26:193–200.

    Article  Google Scholar 

  • Lanfermeijer, F.C., J. Dijkhuis, M.G.J. Sturre, Pd. Haan, and J. Hille. 2003. Cloning and characterization of the durable tomato mosaix virus resistance gen Tm-22 from Lycopersicon esculentum. Plant Mol. Biol. 52:1037–1049.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.I., J.H. Kim, and M.C. Yea. 2010. Immunocapture RT-PCR for detection of seed-borne viruses on Cucurbitaceae crops. Res. Plant Dis. 16:121–124.

    Article  CAS  Google Scholar 

  • Lee, Y.H., M. Jung, S.H. Shin, J.H. Lee, S.H. Choi, N.M. Her, J.H. Lee, K.H. Ryu, K.Y. Paek, and C.H. Harn. 2009. Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep. 28:223–232.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.H., H.S. Kim, J.Y. Kim, M. Jung, Y.S. Park, J.S. Lee, S.H. Choi, N.H. Her, J.H. Lee, N.I. Hyung, C.H. Lee, S.G. Yang, and C.H. Harn. 2004. A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Rep. 23:50–58.

    CAS  PubMed  Google Scholar 

  • Loughran, S.T. and D. Walls. 2011. Purification of poly-histisine-tagged proteins. Methods Mol. Biol. 681:311–335.

    Article  CAS  PubMed  Google Scholar 

  • Manns, J.M. 2011. SDS-Polyacrylmide gel electrophoresis (SDS-PAGE) of proteins. Curr. Protoc. Microbiol. 22:A.3M.1-A.3M.13. DOI: 10.1002/9780471729259.mca03ms22

  • Mekuria, G., S.A. Ramesh, E. Alberts, T. Bertozzi, M. Wirthensohn, G. Collins, and M. Sedgley. 2003. Comparison of ELISA and RT-PCR for the detection of prunus necrotic ring spot virus and prune dwarf virus in almond (Prumusdulcis). J. Virol. Methods 114:65–69.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, G.D., H.Y. Wu, and N.L. Allbritton. 2004. Targeted protein functionalization using His-tags. Bioconjugate Chem. 15:969–982.

    Article  CAS  Google Scholar 

  • Plagemann, P.G.W. 2004. The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunop. 102:265–278.

    Article  Google Scholar 

  • Quemada, H.D., D. Gonsalves, and J.L. Slightom. 1991 Expression of coat protein gene from cucumber mosaic virus strain C in tobacco: Protection against infections by CMV strains transmitted mechanically or by aphids. Phytopathology 81:794–802.

    Article  Google Scholar 

  • Ryu, H.J., J.S. Kim, K.Y. Kim, B.R. Nam, M.J. Nam, W.B. Shim, N.S. Kim, Y,J. Cho, and D.H. Chung. 2010. Production of monoclonal antibody against Escherichia coli O157:H7 and development of enzyme linked immunosorbent assay. Kor. J. Food Sci. Technol. 42:329–334.

    Google Scholar 

  • Seo, P.S., S.Y. Heo, E.J. Han, J.W. Seo, S.H. Ghim, and C.H. Kim. 2009. Bacterial expression and purification of human papillomavirus type 18 L1. Biotechnol. Bioproc. Eng. 14:168–174.

    Article  CAS  Google Scholar 

  • Sun, W., K. Jiao, S. Zhang, C. Zhang, and Z. Zhang. 2001. Electrochemical detection for horseradish peroxidase-based enzyme immunoassay using p-amino phenol as substrate and its application in detection of plant virus. Anal. Chim. Acta 434:43–50.

    Article  CAS  Google Scholar 

  • Talukder, Y., R. Gopal, N. Andrews, M. Glenn, J. Breurer, and D. Brown. 2005. Development and evaluation of varicella zoster virus ELISA for oral fluid suitable for epidemiological studies. J. Virol. Methods 128:162–167.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., X. Jiao, X. Zhou, H. Liu, Y. Ni, and J. Wu. 2013. Highly sensitive serological methods for detecting tomato yellow leaf curl virus in tomato plants and whiteflies. Virol. J. 10:142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu, C., J. Wu, and X. Zhou. 2005. Detection and subgrouping of cucumber mosaic virus isolates by TAS-ELISA and immunocapture RT-PCR. J. Virol. Methods 123:155–161.

    Article  CAS  PubMed  Google Scholar 

  • Zein, H.S., J.A. Teixeira da Silve, and K. Miyatake. 2009a. Antigenic properties of the coat of cucumber mosaic virus using monoclonal antibodies. J. Virol. Methods 162:223–230.

    Article  CAS  PubMed  Google Scholar 

  • Zein, H.S., J.A. Teixeira da Silve, and K. Miyatake. 2009b. Monoclonal antibodies specific to cucumber mosaic virus coat protein possess DNA-hydrolyzing activity. Mol. Immunol. 46:1527–1533.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Lee.

Additional information

These author contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Phat, C., Kim, E. et al. Improved detection of Cucumber mosaic virus coat protein (CMV-CP) in genetically modified pepper (Capsicum annuum) using a polyclonal antibody to a synthetic CP peptide. Hortic. Environ. Biotechnol. 56, 316–323 (2015). https://doi.org/10.1007/s13580-015-0139-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0139-5

Additional key words

Navigation