Skip to main content
Log in

Ascorbate levels and activities of enzymes related to the glutathione-ascorbate cycle in fruits of Chinese persimmon cultivars

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

We evaluated differences in ascorbic acid (AsA) and glutathione (GSH) contents and activities of enzymes involved in the AsA metabolism in fruits of 20 cultivars of Chinese persimmon (Diospyros kaki). The total AsA content ranged from 3.85 (cv. Yangshuohuoshi) to 83.02 μmol·g−1 FW (cv. Wangmoshuishi), with an average of 36.69 μmol·g−1 FW across the 20 cultivars. The total GSH content ranged from 0.205 (cv. Yangshuohuoshi) to 0.815 μmol·g−1 FW (cv. Mimiguan) with an average 0.533 μmol·g−1 FW. There were significant differences in activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) in fruits among the 20 cultivars. The AsA content was significantly positively correlated with MDHAR and DHAR activities, but not with GSH and hydrogen peroxide (H2O2) contents or APX activity. These results indicated that both MDHAR and DHAR, especially MDHAR, play important roles in maintaining the AsA redox state by reducing oxidized AsA back to AsA and the AsA level mainly depends on biosynthesis, rather than recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Badejo, A.A., Y. Fujikawa, and M. Esaka. 2009. Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff — Wheeler pathway in acerola (Malpighia glabra). J. Plant Physiol. 166:652–660.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, I.B. 1973. Evolution and the biosynthesis of ascorbic acid. Science 182:1271–1272.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. and D.R. Gallie. 2005. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than does increasing avoidance. Plant Physiol. 138:1673–1689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Z., T.E. Young, J. Ling, and D.R. Gallie. 2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc. Natl. Acad. Sci. USA. 100:3525–3530.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davey, M.W., A. Auwerkerken, and J. Keulemans. 2007. Relationship of apple vitamin C and antioxidant contents to harvest date and postharvest pathogen infection. J. Sci. Food Agr. 87:802–813.

    Article  CAS  Google Scholar 

  • Davey, M.W. and J. Keulemans. 2004. Determining the potential to breed for enhanced antioxidant status in Malus: Mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J. Agric. Food Chem. 52:8031–8038.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M.W., M.M. Van, D. Inze, M. Sanmartin, A. Kanellis, N. Smirnoff, I. Benzie, J. Strain, D. Favell, and J. Fletcher. 2000. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agr. 80:825–860.

    Article  CAS  Google Scholar 

  • Debolt, S., V. Melino, and C.M. Ford. 2007. Ascorbate as a biosynthetic precursor in plants. Ann. Bot. 99:3–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eltayeb, A.E., N. Kawano, G.H. Badawi, H. Kaminaka, T. Sanekata, I. Morishima, T. Shibahara, S. Inanaga, and K. Tanaka. 2006. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264.

    Article  PubMed  Google Scholar 

  • Felicetti, E. and J.P. Mattheis. 2010. Quantification and histochemical localization of ascorbic acid in ‘Delicious’, ‘Golden Delicious’ and ‘Fuji’ apple fruit during on-tree development and cold storage. Postharvest Biol. Technol. 56:56–63.

    Article  CAS  Google Scholar 

  • Gautier, H., F. Lopez-Lauri, C. Massot, R. Murshed, H. Sallanon, and M. Genard. 2010. Impact of ripening and salinity on tomato fruit ascorbate and enzymatic activities related to ascorbate recycling. Funct. Plant Sci. Biotechnol. 4:66–75.

    Google Scholar 

  • Goggin, F.L., C.A. Avila, and A. Lorence. 2010. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. BioEssays 32:777–790.

    Article  CAS  PubMed  Google Scholar 

  • Grace, S.C. and B.A. Logan. 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112:1631–1640.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith, O.W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207–212.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.D. and R. Viola. 2005. Biosynthesis and catabolism of L-ascorbic acid in plants. Crit. Rev. Plant Sci. 24:167–188.

    Article  CAS  Google Scholar 

  • Homnava, A., J. Payne, P. Koehler, and R. Eitenmiller. 1990. Provitamin A (alpha-carotene, beta-carotene and beta-cryptoxanthin) and ascorbic acid content of Japanese and American persimmons. J. Food Quality 13:85–95.

    Article  CAS  Google Scholar 

  • Itoo, S. 1980. Persimmon, p. 442–468. In: S. Nagy and P.E. Shaw (eds.). Tropical and subtropical fruits, composition, properties and uses. Avi Publishing Inc, Westport, CT, USA.

    Google Scholar 

  • Kampfenkel, K., M.M. Van, and D. Inze. 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225:165–167.

    Article  CAS  PubMed  Google Scholar 

  • Kusunoki, K., T. Hara, M. Fujita, Y. Minari, T. Tadokoro, S. Innami, and A. Maekawa. 1998. Histochemical observation and cellular distribution of ascorbic acid in persimmon leaves. J. Nutr. Sci. Vitaminol. 44:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Larkindale, J., J.D. Hall, M.R. Knight, and E. Vierling. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138:882–897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lata, B. 2008. Apple peel antioxidant status in relation to genotype, storage type and time. Sci. Hort. 117:45–52.

    Article  CAS  Google Scholar 

  • Loreto, F. and V. Velikova. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127:1781–1787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, F., Ren, X. Ascorbate levels and activities of enzymes related to the glutathione-ascorbate cycle in fruits of Chinese persimmon cultivars. Hortic. Environ. Biotechnol. 55, 315–321 (2014). https://doi.org/10.1007/s13580-014-0177-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0177-4

Additional key words

Navigation