Skip to main content
Log in

Variation of major glucosinolates in different varieties and lines of rocket salad

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Glucosinolate (GSL) contents in five varieties and eleven lines of rocket salad (Eruca sativa L.) were quantified using HPLC-UV at 227 nm. Eleven GSLs including five aliphatic (glucoraphanin, glucothiobeinin, glucobrassicanapin, glucoerucin, and dimeric 4-mercaptobutyl GSL), two indolyl (glucobrassicin and 4-methoxyglucobrassicin), one aromatic (gluconasturtiin) and three unknown GSLs were identified based on our data base. Aliphatic GSLs were noted as the predominant group with an average 89% of the total content. The highest total GSL amounts were documented in ‘Herb-Fragrant Vegetable’ (31.12 μol·g−1 dry weight (DW)), whereas the lowest was in line 28612 (9.91). Relatively 73% of lines among the lines documented the content more than 8 μmol·g−1 DW of dimeric 4-mercaptobutyl GSL, particularly lines 28615 and 28619 noted more than > 17 μmol·g−1 DW. The sum of three major GSLs (glucoraphanin, glucoerucin, and dimeric 4-mercaptobutyl GSL) attributed > 8 μmol·g−1 DW in all rocket salads, especially ‘Herb-Fragrant Vegetable’ and line 28613 (87 and 93% respectively) in the total GSL accumulation, likewise line 28612 and 28620 attributed > 90%. Indolyl GSLs were ranged 0.27–1.09 μmol·g−1 DW, accounted less than 6% of the total GSLs in varieties and lines. These results provide valuable information regarding the potential beneficial GSL contents individually in different varieties and lines of rocket salads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Barbieri, G., R. Pernice, A. Maggio, S. De. Pascale, and V. Fogliano. 2008. Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem. 107:1687–1691.

    Article  CAS  Google Scholar 

  • Barillari, J., D. Canistro, M. Paolini, F. Ferroni, G.F. Pedulli, R. Iori, and L. Valgimigli. 2005. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem. 53:2475–2482.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R.N., F.A. Mellon, N.P. Botting, J. Eagles, E.A.S. Rosa, and G. Williamson. 2002. Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa rocket salald. Phytochemistry 61:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R.N., R. Carvalho, F.A. Mellon, J. Eagles, and E.A.S. Rosa. 2007. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. J. Agric. Food Chem. 55:67–74.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R.N., E.A.S. Rosa, F.A. Mellon, and P.A. Kroon. 2006. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket) and Bunias orientalis (Turkish rocket). J. Agric. Food Chem. 54: 4005–4015.

    Article  PubMed  CAS  Google Scholar 

  • Cartea, M.E. and P. Velasco. 2008. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 7:213–229.

    Article  CAS  Google Scholar 

  • Cataldi, T.R., A. Rubino, F. Lelario, and S.A. Bufo. 2007. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun. Mass Spectrom. 21:2374–2388.

    Article  PubMed  CAS  Google Scholar 

  • D’ Antuono, L.F., S. Elementi, and R. Neri. 2008. Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199.

    Article  PubMed  Google Scholar 

  • Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA. 94:10367–10372.

    Article  PubMed  CAS  Google Scholar 

  • Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.

    Article  PubMed  CAS  Google Scholar 

  • Farnham, M.W., P. Simon, and J.R. Stommel. 1999. Improved phytonutrient content through plant genetic improvement. Nutr. Rev. 57:S19–S26.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., K. Zhao, and M. Whiteman. 2000. The gastrointestinal tract: A major site of antioxidant action? Free Radic. Res. 33: 819–830.

    Article  PubMed  CAS  Google Scholar 

  • International Standards Organization (ISO). 1992. Rapeseed: Determination of glucosinolates content. Part 1. Method using High performance liquid chromatography, ISO 9167-1 (E). ISO, Geneva, Switzerland. p. 1–9.

    Google Scholar 

  • Iori, R., R. Bernardi, D. Gueyrard, P. Rollin, and S. Palmieri. 1999. Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: A chemoenzymatic route to sulforaphane. Bioorg. Med. Chem. Lett. 9:1047–1048.

    Article  PubMed  CAS  Google Scholar 

  • Hayers, J.D., M.O. Kelleher, and I.M. Eggleston. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur. J. Nutr. 47(Suppl. 2):73–88.

    Google Scholar 

  • Khoobchandani, M., B.K. Ojeswi, N. Ganesh, M.M. Srivastava, S. Gabbanini, R. Materac, R. Iori, and L. Valgimigli. 2010. Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: Comparison with various aerial and root plant extracts. Food Chem. 120:217–224.

    Article  CAS  Google Scholar 

  • Kim, C.R., Y.S. Lim, S.W. Lee, and S.J. Kim. 2011. Identification and quantification of glucosinolates in rocket salad (Eruca sativa). CNU J. Agric. Sci. 38:28–294.

    CAS  Google Scholar 

  • Kim, S.J., C. Kawaharada, S. Jin, M. Hashimoto, G. Ishii, and H. Yamauchi. 2007. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa. Biosci. Biotechnol. Biochem. 71:114–121.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.J. and G. Ishii. 2006. Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and antioxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci. Plant Nutri. 52:394–400.

    Article  CAS  Google Scholar 

  • Kim, S.J., S. Jin, and G. Ishii. 2004. Isolation and structural elucidation of 4-( -D-glucopyranosyldisulfanyl) butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity. Biosci. Biotechnol. Biochem. 68:2444–2450.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Sánchez, A., R., Llorach, M.I. Gil, and F. Ferreres. 2007. Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca Vesicaria and Diplotaxis tenuifolia). J. Agric. Food Chem. 55:1356–1363.

    Article  PubMed  Google Scholar 

  • Meyer, M. and S.T. Adam. 2008. Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. Eur. Food Res. Technol. 226:1429–1437.

    Article  CAS  Google Scholar 

  • Mikkelsen, M.D., C.H. Hansen, U. Wittstock, and B.A. Halkier. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275:33712–33717.

    Article  PubMed  CAS  Google Scholar 

  • Mohamedien, S. 1994. Rocket cultivation in Egypt, p. 61–62. In: S. Padulosi (ed.). Rocket genetic resources. International Plant Genetic Resources Institute (IPGRI) report of the first meeting 13–15 November 1994, Lisbon, Portugal. IPGRI, Rome, Italy.

    Google Scholar 

  • Padilla, G., M.E. Cartea. P., Velasco, A. de Haro, and A. Ordás. 2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545.

    Article  PubMed  CAS  Google Scholar 

  • Pedras, M.S.C., M.G. Sarwar, M. Suchy, and A.M. Adio. 2006. The phytoalexins from cauliflower, caulilexins A, B and C: Isolation, structure determination, syntheses and antifungal activity. Phytochemistry 67:1503–1509.

    Article  PubMed  CAS  Google Scholar 

  • Pignone, D. 1997. Present status of rocket genetic resources and conservation activities, p. 2–12. In: S. Padulosi and D. Pignone (eds.). In rocket: A Mediterranean crop for the world. International Plant Genetic Resources Institute (IPGRI) report of a workshop 13–14 December 1996, Legnaro, Italy. IPGRI, Rome, Italy.

    Google Scholar 

  • Sakushima, A., M. Coskun, and T. Maoka. 1995. Sinapinyl but-3-enylglucosinolate from Boreava orientalis. Phytochemistry 40:483–485.

    Article  CAS  Google Scholar 

  • Shapiro, T.A. J.W. Fahey, K.L. Wade, K.K. Stephenson, and P. Talalay. 2001. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: Metabolism and excretion in humans. Cancer Epidemiol. Biomarkers Prev. 10:501–508.

    PubMed  CAS  Google Scholar 

  • Sørensen, H. 1990. Glucosinolates: structure, properties, function, p. 149–172. In: F. Shahidi (ed.). Canola and rapeseed. Production, chemistry, nutrition and processing technology. Van Nostrand and Reinhold, New York.

    Chapter  Google Scholar 

  • Steinmetz, K.A. and J.D. Potter. 1991. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control 2:427–442.

    Article  CAS  Google Scholar 

  • Vig, A.P., G., Rampal, T.S., Thind, and S. Arora. 2009. Bio-protective effects of glucosinolates — A review. LWT-Food Sci. Technol. 42:1561–1572.

    Article  CAS  Google Scholar 

  • Wittstock, U. and B.A. Halkier. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7:263–270.

    Article  PubMed  CAS  Google Scholar 

  • Yaniv, Z., D. Schafferman, and Z. Amar. 1998. Tradition, uses and biodiversity of rocket (Eruca sativa, Brassicaceae) in Israel. Econ. Bot. 52:394–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ju Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, JH., Arasu, M.V., Lim, YP. et al. Variation of major glucosinolates in different varieties and lines of rocket salad. Hortic. Environ. Biotechnol. 54, 206–213 (2013). https://doi.org/10.1007/s13580-013-0122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-013-0122-y

Additional key words

Navigation