Skip to main content
Log in

Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress

  • Research Report
  • Protected Horticulture
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The present study was carried out to elucidate the protective role of sodium nitroprusside (SNP) against salt (NaCl) stress given as seed soaking in tomato (Solanum lycopersicum Mill. cv. K-21). For this experiment prior to sowing, the surface sterilized tomato seeds were soaked in different concentrations of NaCl solution (50, 100, and 150 mM) for 8 hours. Some NaCl soaked seeds were then transferred to the 10−5 M of SNP solution for 8 hours. The plants were sampled at 60 DAS to assess the nitrate reductase activity, proline content and the activities of antioxidant enzymes. The antioxidant enzyme activity and proline content increased in the plants where SNP was applied as a follow up treatment of the NaCl as seed soaking over the control plants thereby providing stress tolerance to the plants. In case of the nitrate reductase activity the toxic effects generated by the lowest concentration of NaCl (50 mM) was completely neutralized by SNP and partly at higher concentrations (100/150 mM). These results suggest that nitric oxide can be used as a stress alleviator in plants which are grown in the soil contaminated with salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abdel Mawgoud, A.M.R. 2002. Growth and production of greenhouse sweet pepper in relation to root zone conditions, p. 115. PhD Thesis, Humboldt Univ., Berlin, Germany.

    Google Scholar 

  • Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107:1049–1054.

    PubMed  CAS  Google Scholar 

  • Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism oxidative stress and signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 55:373–399.

    CAS  Google Scholar 

  • Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. J. Plant Physiol. 141:139–396.

    Google Scholar 

  • Ashraf, M. and M.A. Foolad. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ. Exp. Bot. 59:206–216.

    Article  CAS  Google Scholar 

  • Aslam, M., R.C. Huffaker, and D.M. Rains. 1984. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol. 76:321–325.

    Article  PubMed  CAS  Google Scholar 

  • Bates, L.S., R.T. Walden, and I.D. Tearse. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, L.O. and I. Fridovich. 1971. Superoxide dismutase improved assays and assay applicable to acrylamide gels. Ann. Biochem. 44:276–287.

    Article  CAS  Google Scholar 

  • Beligni, M.V. and L. Lamattina. 2000. Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyls elongation, three light inducible responses in plants. Planta 210:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Beligni, M.V. and L. Lamattina. 1999. Is nitric oxide toxic or protective? Trends Plant Sci. 4:299–300.

    Article  PubMed  Google Scholar 

  • Besson-Bard, A., A. Pugin, and D. Wendehenne. 2008. New insights into nitric oxide signalling in plants. Annu. Rev. Plant Biol. 59: 21–39.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, H.W. 1999. Nitrate reductase structure, function and regulation bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:277–303.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B. and A.C. Maehly. 1955. Assay of catalase and peroxidase. Methods Enzymol. 2:764–775.

    Article  Google Scholar 

  • Correa-Aragunde, A., M. Graziano, C. Chevalier, and L. Lamattina. 2006. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J. Exp. Bot. 57: 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne, M., Y. Xia, R.A. Dixon, and C. Lamb. 1998. Nitric oxide functions as a signal in plant defense resistance. Nature 394:585–588.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne, M., J. Zeier, A. Morcco, and C. Lamb. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plants hypersensitive disease-resistance response. Proc. Natl. Acad. Sci. U.S.A. 98:13454–13459.

    Article  PubMed  CAS  Google Scholar 

  • di Toppi, L.S. and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41:105–130.

    Article  Google Scholar 

  • Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. Mol. Biol. 58:61–97.

    CAS  Google Scholar 

  • Garcia-Mata, C. and L. Lamattina. 2002. Nitric oxide and abscissic acid cross talk in guard cells. Plant Physiol. 128:790–792.

    Article  PubMed  CAS  Google Scholar 

  • Ghassemi, F., M. Jakeman, and H.A. Nix. 1995. Salinization of land and water resources: Human causes, extent management & case studies. University of New South Wales, Sydney.

    Google Scholar 

  • Gomez, L.D., G. Noctor, M. Knight, and C.H. Foyer. 2004. Regulation of calcium signalling and gene expression by glutathione. J. Exp. Bot. 55:1851–1859.

    Article  PubMed  CAS  Google Scholar 

  • Guo, F., M. Okamoto, and N.M. Crawford. 2003. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Z. Tian, D. Yan, J. Zhang, and P. Qin. 2009. Effects of nitric oxide on salt tolerance in Kosteletzkya virginica. Life Sci. J. 6:67–75.

    CAS  Google Scholar 

  • Hayat, S., S. Yadav, B. Ali, and A. Ahmad, 2010. Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of tomato (Lycopersicon esculentum). Russ. J. Plant Physiol. 57:224–133.

    Article  Google Scholar 

  • Hopkins, W.J. 1995. Introduction to plant physiology. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Jain, A. and H.S. Srivastava. 1981. Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol. Plant. 51:339–342.

    Article  CAS  Google Scholar 

  • Jaworski, E.G. 1971. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Comm. 43:1274–1279.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, J., S. Harel, and R. Granit. 1991. Nitric oxide as an antioxidant. Arch. Biochem. Biophys. 289:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Kay, C.J. and M.J. Barber. 1986. Assimilatory nitrate reductase from Chlorella: Effect of ionic strength and pH on catalytic activity. J. Biol. Chem. 261:14125–14129.

    PubMed  CAS  Google Scholar 

  • Klepper, L.A. 1975. Evolution of nitrogen oxide gases from herbicide treated plant tissues. W.S.S.A. 184:70. (Abstr.)

    Google Scholar 

  • Kramlinch, J.C. and W.P. Linak. 1994. Nitrous oxide behaviour in the atmosphere, and in combustion and industrial systems. Prog. Energy Combust. Sci. 20:149–202.

    Article  Google Scholar 

  • Leshem, Y.Y. 1996. Nitric oxide in biological systems. Plant Growth Regul. 18:155–169.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. 2000. Nitric oxide in plants: Occurrence, function and use. Kluwer Academic Publishers, Dordrecht, Boston, London.

    Book  Google Scholar 

  • Leshem, Y.Y., R.B.H. Wills, and V.V.V. Ku. 1998. Evidence for the function of the free radical gas nitric oxide (NO) as an endogenous regulating factor in higher plants. Plant Physiol. Biochem. 36:825–833.

    Article  CAS  Google Scholar 

  • Li, Y. 2000. Analysis of greenhouse tomato production in relation to salinity and shoot environment. PhD Thesis, Wageningen Agricultural University, Wageningen, Netherlands.

    Google Scholar 

  • Mohamed, A.N., M.H. Rahman, A.A. Alsadon, and R. Islam. 2007. Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars. Plant Tiss. Cult. Biotech. 17:217–220.

    Google Scholar 

  • Neill, S.J., R. Desikan, and J.T. Hancock. 2003. Nitric oxide signaling in plants. New Phytol. 159:11–35.

    Article  CAS  Google Scholar 

  • Pagnussat, G.C., M.L. Lanteri, M.C. Lombardo, and L. Lamattina. 2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Pedroso, M.C., J.R. Magathaes, and D. Duszan. 2000. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J. Exp. Bot. 51:1027–1036.

    Article  PubMed  CAS  Google Scholar 

  • Qiao, W. and L.M. Fan. 2008. Nitric oxide signalling in plant responses to abiotic stresses. J. Integ. Plant Biol. 50:1238–1246.

    Article  CAS  Google Scholar 

  • Salisbury, F.B. and C.W. Ross. 1992. Plant physiology. 4th ed. Wadsworth, Belmont, CA.

    Google Scholar 

  • Schutzendubell, A. and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53:1351–1365.

    Article  Google Scholar 

  • Solomonson, L.P. and M.J. Barber. 1990. Assimilatory nitrate reductase: Functional properties and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 4:225–253.

    Article  Google Scholar 

  • Stohr, C. and S. Stremlau. 2005. Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot. 57:463–470.

    Article  PubMed  Google Scholar 

  • Stohr, C. and W.R. Ullrich. 2002. Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 53: 2293–2303.

    Article  PubMed  CAS  Google Scholar 

  • Tantawy, A.S. 2007. Effect of some mineral and organic compounds on salinity tolerance in tomato. PhD Thesis, Al-Azhar University, Cairo, Egypt.

    Google Scholar 

  • Uchida, A., A.T. Jagendorf, T. Hibino, T. Takable, and T. Takable. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress: Tolerance in rice. Plant Sci. 163:515–523.

    Article  CAS  Google Scholar 

  • Vuylsteker, C., E. Prinsen, J. Boutin, H.A. Van Onckelen, and S. Rambour. 1998. Evidence for nitrate reductase expression during initiation of lateral roots by NAA in chicory. J. Exp. Bot. 49:937–944.

    CAS  Google Scholar 

  • Xu, J., W. Wang, H. Yin, X. Liu, H. Sun, and Q. Mi. 2010. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330.

    Article  CAS  Google Scholar 

  • Yu, X., S. Sukumaran, and L. Marton. 2001. Differential expression of the Arabidopsis Nia1 and Nia2 genes cytokinin-induced nitrate reductase. Plant Physiol. 116:1091–1096.

    Article  Google Scholar 

  • Zhang, B., H. Wang, P. Wang, and H. Zhang. 2010. Involvement of nitric oxide synthase-dependent nitric oxide and exogenous nitric oxide in alleviating NaCl induced osmotic and oxidative stress in Arabidopsis thaliana. Afri. J. Agri. Res. 5:1713–1721.

    Google Scholar 

  • Zhang, S.Y., X.L. Ren, and S.C. Cheng. 2004. Effects of seed soaking with exogenous nitric oxide on the seed germination and seedling growth of maize. Plant Physiol. Commun. 40:309–310.

    Google Scholar 

  • Zhang, Z.B., G. Yang, F. Arana, Z. Chen, Y. Li, and H.J. Xia. 2007. Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2b) is involved in axillary shoot branching via auxin signalling. Plant Physiol. 144:942–951.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., H.J. Tan, Y.B. Liu, X.R. Li, and G.X. Chen. 2009. Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell Tiss. Org. Cult. 98:97–103.

    Article  CAS  Google Scholar 

  • Zhou, B., Z. Guo, J. Xing, and B. Huang. 2005. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J. Exp. Bot. 56:3223–3228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, S., Yadav, S., Wani, A.S. et al. Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hortic. Environ. Biotechnol. 53, 362–367 (2012). https://doi.org/10.1007/s13580-012-0481-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0481-9

Additional key words

Navigation