Skip to main content
Log in

Identification of genes induced by Venturia nashicola in indigenous Korean pear ‘Hwangsilri’

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Indigenous Korean pear ‘Hwangsilri’ leaves were inoculated with Venturia nashicola to build expressed sequence tags (ESTs) database as resources for transcripts induced in the inoculated leaves. After performing subtractive suppression hybridization using cDNA of the inoculated and uninoculated leaves harvested at 1, 48, and 96 hours after inoculation, 159 (1 hour), 384 (48 hours), and 110 clones (96 hours) were selected and sequenced. BLASTX searches each cDNA library against Genbank revealed 15, 50, and 22 unique sequences at 1, 48, and 96 hours after inoculation, respectively. Most highly represented ESTs at 1 hour after inoculation were photosynthesis- and senescence-related genes such as light harvesting chlorophyll a/b binding protein, ribulose-bishosphate carboxylase/oxyganase, and senescence-associated protein. Cytochrome P450-like TATA box binding proteins and manganese superoxide dismutase associated with the defense response, biotic and abiotic stresses were differentially expressed at 1 hour after inoculation. Although more than 50% of ESTs at 1 and 48 hours after inoculation were also associated with photosynthesis- and carbon fixation-related genes, defense-related genes were annotated as 14 clones at 48 hours after inoculation. Six ESTs associated with pathogen-defense and biotic and abiotic stresses were expressed only at 48 hours after inoculation. At 96 hours after inoculation, seven ESTs were involved in defense-response and biotic and abiotic stresses, and three out of the seven ESTs such as cyclophilin, F-box family, and leucine-rich repeat receptor-like kinase (LRR-RLK) were uniquely expressed. Quantitative real-time polymerase chain reaction analysis revealed that the transcripts for aldo-keto reductase (AKR) and LRR-RLK were highly expressed in the incompatible interaction. AKR gene was more highly expressed in resistant cultivar ‘Hwangsilri’ and moderately susceptible one ‘Gamcheonbae’ than in other cultivars. LRR-RLK showed differentially higher expression pattern in inoculated than in uninoculated leaves of susceptible cultivars including ‘Gamcheonbae’ and ‘Hwangkeumbae’. The ARK and LRRRLK genes were found to be associated with plant defense mechanism. However, more detailed further study using transformants introgressed these genes is required to understand how these genes are expressed and regulated by infection with V. nashicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abe, K. and A. Kurihara. 1993. Species and varietal differences in scab resistance of pear. J. Jpn. Soc. Hort. Sci. 61:789–794.

    Article  Google Scholar 

  • Abe, K., T. Saito, O. Terai, Y. Sato, and K. Kotobuki. 2008. Genotypic differences for the susceptibility of Japanese, Chinese, and European pears to Venturia nashicola, the cause of scab on Asian pear. Plant Breed. 124:407–412.

    Article  Google Scholar 

  • Adam, M.D., J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos, H. Xiao, C.R. Merril, A. Wu, B. Olde, R.F. Moreno, A.R. Kerlavage, W.R. McCombie, and J.C. Venter. 1991. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252:1651–1656.

    Article  Google Scholar 

  • Baldo, A., J.L. Norelli, R.E. Farrell, Jr., C.L. Bassett, H.S. Aldwinckle, and M. Malnoy. 2010. Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol. 10:1–10.

    Article  PubMed  Google Scholar 

  • Brenner, S., M. Johnson, J. Bridgham, G. Golda, D. Lloyd, D. Johnson, S. Luo, S. McCurdy, M. Foy, M. Ewan, R. Roth, D. George, S. Eletr, G. Albrecht, E. Vermaas, S.R. Williams, K. Moon, T. Burcham, M. Pallas, R.B. DuBridge, J. Kirchner, K. Fearon, J. Mao, and K. Corcoran. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol. 18:630–634.

    Article  CAS  Google Scholar 

  • Cheng, D.W., H. Lin, Y. Takahashi, M.A. Walker, E.L. Civerolo, and D.S. Stenger. 2010. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection. BMC Plant Biol. 10:135.

    Article  PubMed  Google Scholar 

  • Degenhardt, J., A.N. Al-Masri, S. Kurkcuoglu, I. Szankowski, and A.E. Gau. 2005. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol. Genet. Genom. 273:326–335.

    Article  CAS  Google Scholar 

  • Egusa, M., H. Ochi, T. Tsuge, H. Otani, and M. Kodama. 2009. Identification of putative defense-related genes in Japanese pear against Alternaria alternata infection using suppression subtractive hybridization and expression analysis. J. Gen. Plant Pathol. 75:119–124.

    Article  CAS  Google Scholar 

  • Faize, M., L. Faize, and H. Ishii. 2007. Characterization of a leucinerich repeat receptor-like protein kinase (LRPK) gene from Japanese pear and its possible involvement in scab resistance. J. Gen. Plant Pathol. 73:104–112.

    Article  CAS  Google Scholar 

  • Faize, M., T. Sugiyama, L. Faize, and H. Ishii. 2004. Polygalacturonase -inhibiting protein (PGIP) from Japanese pear: Possible involvement in resistance against scab. Physiol. Mol. Plant Pathol. 63:319–327.

    Article  Google Scholar 

  • Gao, M., X. Wang, D. Wang, F. Xu, X. Ding, Z. Zhang, D. Bi, Y.T. Cheng, S. Chen, X. Li, and Y. Zhang. 2009. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:34–44.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Godiard, L., L. Sauviac, K.U. Torii, O. Grenon, B. Mangin, N.H. Grimsley, and Y. Macro. 2003. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 36:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Godoy, A.V., A.S. Lazzaro, C.A. Casalongue, and B. San Segundo. 2000. Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci. 152:149–162.

    Article  Google Scholar 

  • Gomez-Gomez, L. and L. Boller. 2000. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elictor flagellin in Arabidopsis. Mol. Cell 5:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  • Heath, M.C. 2000. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3:315–319.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H.E., M.J. Ger, M.K. Yip, C.Y. Chen, A.K. Pandey, and T.Y. Feng. 2004. A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Physiol. Mol. Plant Pathol. 64:103–110.

    Article  CAS  Google Scholar 

  • Huang, L., X. Gao, H. Buchenauer, Q. Han, B. Liu, and Z. Kang. 2008. Studies on development stages of Venturia nashicola in Asian pear and on the interation of the fungicidal preparation Clarinet® in stages of the life cycle of the pathogen. Eur. J. Hort. Sci. 73:118–123.

    CAS  Google Scholar 

  • Iandolino, A.B., F. Goes da Silva, H. Lim, H. Choi, L.E. Willaims, and D.R. Cook. 2004. High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol. Biol. Rep. 22:269–278.

    Article  CAS  Google Scholar 

  • Ishii, H. and H. Yanase. 2000. Venturia nashicola, the scab fungus of Japanese and Chinese pears: A species distinct from V. pirina. Mycol. Res. 104:755–759.

    Article  Google Scholar 

  • Isin, E.M. and F.P. Guengerich. 2007. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim. Biophys. Acta 1770:314–329.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, S., P. Park, and H. Ishii. 2007. Ultrastructural study on scab resistance expressed in epidermal pectin layers of pear leaves. J. Gen. Plant Pathol. 73:314–323.

    Article  CAS  Google Scholar 

  • Kliebenstein, D.J., H.C. Rowe, and K.J. Denby. 2005. Secondary metabolites influence Arabidopsis/Botrytis interactions: Variation in host production and pathogen sensitivity. Plant J. 44:25–36.

    Article  PubMed  CAS  Google Scholar 

  • Komjanc, M., S. Festi, L. Rizzotti, L. Cattivelli, F. Cervone, and G. De Lorenzo. 1999. A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus × domestica by Venturia inaequlis infection and salicylic acid treatment. Plant Mol. Biol. 40:945–957.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., H. Zhao, B. Li, and X.M. Xu. 2003. Effects of temperature, relative humidity, and duration of wetness period on germination and infection by conidia of the pear scab pathogen (Venturia nashicola). Plant Pathol. 52:546–552.

    Article  Google Scholar 

  • Li, J. and J. Chory. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., J. Wen, K.A. Lease, J.T. Doke, F.E. Tax, and J.C. Walker. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Liau, C.H., J.C. Lu, V. Prasad, H.H. Hsiao, S.J. You, J.T. Lee, N.S. Yang, H.E. Huang, T.Y. Peng, W.H. Chen, and M.T. Chan. 2003. The sweet pepper ferrodoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res. 12: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Muller, M.W. and H. Ishii. 1997. Esterase activity from Venturia nashicola: Histochemical detection and supposed involvement in the pathogenesis of scab on Japanese pear. J. Phytopathol. 145: 473–477.

    Article  Google Scholar 

  • Park, P., H. Ishii, Y. Adachi, S. Kanematus, H. Ieki, and S. Umemoto. 2000. Infection behavior of Venturia nashicola, the cause of scab on Asian pears. Biochem. Cell Biol. 90:1209–1216.

    CAS  Google Scholar 

  • Rebrikov, D.V., O.V. Britanova, N.G. Gurskaya, K.A. Lukyanov, V.S. Tarabykin, and S.A. Lukyanov. 2000. Mirror orientation selection (MOS): A method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucl. Acids Res. 28(20):e90.

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S. and H.J. Skaletsky. 1998. PRIMER 3 code. http://www.genome.wi.mit.edu/genome_software/other/primer.html.

  • Scheel, D. 1998. Resistance response physiology and signal transduction. Curr. Opin. Plant Biol. 1:305–310.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, A.D. and P. Singh. 2003. Effect of water stress on expression of a 20 kD cyclophilin-like protein in drought susceptible and tolerant cultivars of sorghum. J. Plant Biochem. Biotechnol. 12: 77–80.

    Article  CAS  Google Scholar 

  • Tanaka, S. and S. Yamamoto. 1964. Studies on pear scab. II. Taxonomy of the causal fungus of Japanese pear scab. Ann. Phytopathol. Soc. Jpn. 29:128–136.

    Article  Google Scholar 

  • Terakami, S., M. Shoda, Y. Adachi, T. Gonai, M. Kasumi, Y. Sawamura, H. Iketani, K. Kotobuki, A. Patocchi, C. Gessler, T. Hayahi, and T. Yamamoto. 2006. Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor. Appl. Genet. 113:743–752.

    Article  PubMed  CAS  Google Scholar 

  • Torii, K.U., N. Mitsukawa, T. Oosumi, Y. Matsuura, R. Yokoyama, R.F. Whittier, and Y. Komeda. 1996. The Arabidopsis ERECA gene encodes a putative receptor protein kinase with extracellular leucine -rich repeat. Plant Cell 8:735–746.

    PubMed  CAS  Google Scholar 

  • Turóczy, Z., P. Kis, K. Tőrők, M. Cserháti, A. Lendvai, D. Dudits, and G.V. Horváth. 2011. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol. Biol. 75:399–412.

    Article  PubMed  Google Scholar 

  • Velculescu, V.E., L. Zhang, B. Vogelstein, and K.W. Kinzler. 1995. Serial analysis of gene expression. Science 270:484–487.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Q.L. and H. Ishii. 2009. Molecular cloning and expression analysis of genes related to phosphatidic acid synthesis in Japanese pear leaves inoculated with Venturia nashicola. J. Gen. Plant Pathol. 75:413–421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, I.S., Bae, K.M., Nam, G.Y. et al. Identification of genes induced by Venturia nashicola in indigenous Korean pear ‘Hwangsilri’. Hortic. Environ. Biotechnol. 53, 513–520 (2012). https://doi.org/10.1007/s13580-012-0125-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0125-0

Additional key words

Navigation