Skip to main content

Advertisement

Log in

DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Severe corneal cryoinjury can cause permanent corneal swelling and bullous keratopathy, one of the main reason for loss of sight. Mouse amniotic fluid mesenchymal stem cells (mAF-MSCs) can repair corneal damage caused by freezing; however, whether the exosomes derived from mAF-MSCs have the same repair effect is unknown. In this study, the mAF-MSC-exosomes were transplanted into the eyeballs of corneal cryoinjured mice. Histopathological examination showed that the mAF-MSC-exosomes improved the corneal structure and status of corneal epithelial cells in corneal cryoinjured mice. RRBS-sequencing showed that compared with the control group, four genes (Rpl13-ps6, miR-33, Hymai, and Plagl1), underwent DNA hypermethylation modification after mAF-MSC-exosomes treatment. The result of FISH indicated that miR-33-3p hybridization signals were enhanced in corneal epithelial cells from mice treated with mAF-MSC-exosomes. Semi-quantitative PCR and western blotting indicated that mAF-MSC-exosomes contained high levels of DNMT1 mRNA and protein. Additionally, luciferase report assays indicated that miR-33-3p overexpression in NIH-3T3 mouse embryonic fibroblast cells inhibited the activity of luciferase carrying a sequence from the 3’ untranslated region of Bcl6. Moreover, BCL6 mRNA and protein levels in corneal tissues from mice treated with mAF-MSC-exosomes were higher than those in the control group. Therefore, our results suggested that mAF-MSC-exosomes could repair corneal cryoinjury by releasing DNMT1, which induced hypermethylation of the miR-33 promoter in corneal epithelial cells. Consequent downregulated miR-33 transcription upregulated Bcl6 expression, ultimately achieving the repair of corneal cryoinjury in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhao S, Fei X, Liu T, Liu Y. Low temperature induces cryoinjury in mouse corneal endothelial cells by stimulating the Stk11-p53 signal pathway. Mol Med Rep. 2015;12(5):6612–6. https://doi.org/10.3892/mmr.2015.4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fei X, Cai Y, Lin F, Huang Y, Liu T, Liu Y. Amniotic fluid mesenchymal stem cells repair mouse corneal cold injury by promoting mRNA N4-acetylcytidine modification and ETV4/JUN/CCND2 signal axis activation. Hum Cell. 2021;34(1):86–98. https://doi.org/10.1007/s13577-020-00442-7.

    Article  CAS  PubMed  Google Scholar 

  3. Williams KA, Irani YD, Klebe S. Novel therapeutic approaches for corneal disease. Discov Med. 2013;15(84):291–9.

    PubMed  Google Scholar 

  4. Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, et al. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther. 2023;31(8):2454–71. https://doi.org/10.1016/j.ymthe.2023.05.002.

    Article  CAS  PubMed  Google Scholar 

  5. Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res. 2013;35:1–17.

    Article  CAS  PubMed  Google Scholar 

  6. Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9. https://doi.org/10.1097/TP.0b013e3182111f01.

    Article  PubMed  Google Scholar 

  7. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

    Article  CAS  PubMed  Google Scholar 

  8. Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020;159:332–43. https://doi.org/10.1016/j.addr.2020.04.004.

    Article  CAS  PubMed  Google Scholar 

  9. Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer. 2022;21(1):179. https://doi.org/10.1186/s12943-022-01650-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9(1):63. https://doi.org/10.1186/s13287-018-0791-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gang D, Yu CJ, Zhu S, Zhu P, Nasser MI. Application of mesenchymal stem cell-derived exosomes in kidney diseases. Cell Immunol. 2021;364:104358. https://doi.org/10.1016/j.cellimm.2021.104358.

    Article  CAS  PubMed  Google Scholar 

  12. Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021. https://doi.org/10.3390/cells10081959.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014;23(13):1548–57. https://doi.org/10.1089/scd.2013.0371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geng Z, Chen H, Zou G, Yuan L, Liu P, Li B, et al. Human amniotic fluid mesenchymal stem cell-derived exosomes inhibit apoptosis in ovarian granulosa cell via miR-369-3p/YAF2/PDCD5/p53 pathway. Oxid Med Cell Longev. 2022;2022:3695848. https://doi.org/10.1155/2022/3695848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou G, Ji Q, Geng Z, Du X, Jiang L, Liu T. miR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia. Hereditas. 2022;159(1):35. https://doi.org/10.1186/s41065-022-00250-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nie X, Chen H, Xiong Y, Chen J, Liu T. Anisomycin has a potential toxicity of promoting cuproptosis in human ovarian cancer stem cells by attenuating YY1/lipoic acid pathway activation. J Cancer. 2022;13(14):3503–14. https://doi.org/10.7150/jca.77445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi Z, Yan Z, Wang Y, Ji N, Yang X, Zhang A, et al. Ginsenoside Rh2 Inhibits NLRP3 inflammasome activation and improves exosomes to alleviate hypoxia-induced myocardial injury. Front Immunol. 2022;13:883946. https://doi.org/10.3389/fimmu.2022.883946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim HH, Shim YR, Choi SE, Falana TE, Yoo JK, Ahn SH, et al. Exosome-based delivery of super-repressor IkappaBalpha alleviates alcohol-associated liver injury in mice. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15020636.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han SB, Ang H, Balehosur D, Peh G, Chaurasia SS, Tan DT, et al. A mouse model of corneal endothelial decompensation using cryoinjury. Mol Vis. 2013;19:1222–30.

    PubMed  PubMed Central  Google Scholar 

  20. Mishra V. Dot-blotting: a quick method for expression analysis of recombinant proteins. Curr Protoc. 2022;2(9): e546. https://doi.org/10.1002/cpz1.546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, et al. Highly potent stem cells from full-term amniotic fluid: a realistic perspective. Reprod Biol. 2017;17(1):9–18. https://doi.org/10.1016/j.repbio.2017.02.001.

    Article  PubMed  Google Scholar 

  22. Zhou J, Wang D, Liang T, Guo Q, Zhang G. Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications. Arch Gynecol Obstet. 2014;290(2):223–31. https://doi.org/10.1007/s00404-014-3231-7.

    Article  CAS  PubMed  Google Scholar 

  23. Harrell CR, Gazdic M, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, et al. Therapeutic potential of amniotic fluid derived mesenchymal stem cells based on their differentiation capacity and immunomodulatory properties. Curr Stem Cell Res Ther. 2019;14(4):327–36. https://doi.org/10.2174/1574888X14666190222201749.

    Article  CAS  PubMed  Google Scholar 

  24. Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A. Mesenchymal stem cells from Wharton’s jelly and amniotic fluid. Best Pract Res Clin Obstet Gynaecol. 2016;31:30–44. https://doi.org/10.1016/j.bpobgyn.2015.07.006.

    Article  PubMed  Google Scholar 

  25. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. https://doi.org/10.1038/nrg3230.

    Article  CAS  PubMed  Google Scholar 

  26. van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics. 2022;14(21):1373–88. https://doi.org/10.2217/epi-2022-0287.

    Article  CAS  PubMed  Google Scholar 

  27. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84. https://doi.org/10.1038/s41576-018-0004-3.

    Article  CAS  PubMed  Google Scholar 

  28. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69. https://doi.org/10.1038/nrg3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwang H, Chang HR, Baek D. Determinants of functional microRNA targeting. Mol Cells. 2023;46(1):21–32. https://doi.org/10.14348/molcells.2023.2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279(11):2047–59. https://doi.org/10.1111/j.1742-4658.2012.08589.x.

    Article  CAS  PubMed  Google Scholar 

  31. Elgharably H, Okamoto T, Ayyat KS, Niikawa H, Meade S, Farver C, et al. Human lungs airway epithelium upregulate microRNA-17 and microRNA-548b in response to cold ischemia and ex vivo reperfusion. Transplantation. 2020;104(9):1842–52. https://doi.org/10.1097/TP.0000000000003370.

    Article  CAS  PubMed  Google Scholar 

  32. Yin YC, Li XH, Rao X, Li YJ, Du J. Involvement of microRNA/cystine/glutamate transporter in cold-stressed gastric mucosa injury. Front Pharmacol. 2022;13:968098. https://doi.org/10.3389/fphar.2022.968098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hadj-Moussa H, Storey KB. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Cell Mol Life Sci: CMLS. 2018;75(19):3635–47. https://doi.org/10.1007/s00018-018-2821-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye BH, Lista F, Lo Coco F, Knowles DM, Offit K, Chaganti RS, et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science. 1993;262(5134):747–50. https://doi.org/10.1126/science.8235596.

    Article  CAS  PubMed  Google Scholar 

  35. Onizuka T, Moriyama M, Yamochi T, Kuroda T, Kazama A, Kanazawa N, et al. BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood. 1995;86(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  36. Zollman S, Godt D, Prive GG, Couderc JL, Laski FA. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in drosophila. Proc Natl Acad Sci USA. 1994;91(22):10717–21. https://doi.org/10.1073/pnas.91.22.10717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shvarts A, Brummelkamp TR, Scheeren F, Koh E, Daley GQ, Spits H, et al. A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19(ARF)-p53 signaling. Genes Dev. 2002;16(6):681–6. https://doi.org/10.1101/gad.929302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moriyama M, Yamochi T, Semba K, Akiyama T, Mori S. BCL-6 is phosphorylated at multiple sites in its serine- and proline-clustered region by mitogen-activated protein kinase (MAPK) in vivo. Oncogene. 1997;14(20):2465–74. https://doi.org/10.1038/sj.onc.1201084.

    Article  CAS  PubMed  Google Scholar 

  39. Niu H, Ye BH, Dalla-Favera R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 1998;12(13):1953–61. https://doi.org/10.1101/gad.12.13.1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bereshchenko OR, Gu W, Dalla-Favera R. Acetylation inactivates the transcriptional repressor BCL6. Nat Genet. 2002;32(4):606–13. https://doi.org/10.1038/ng1018.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the projects sponsored by the Science Foundation of Hongkou District Health Commission in Shanghai (Hongwei2202-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liu or Te Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Fei, X., Cui, Z. et al. DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells. Human Cell (2024). https://doi.org/10.1007/s13577-024-01082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01082-x

Keywords

Navigation