Skip to main content

Advertisement

Log in

Establishment and characterization of a recurrent malignant peripheral nerve sheath tumor cell line: RsNF

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive and recurrent soft tissue sarcoma. It most commonly occurs secondary to neurofibromatosis type I, and it has a 5-year survival rate of only 8–13%. To better study the tumor heterogeneity of MPNST and to develop diverse treatment options, more tumor-derived cell lines are needed to obtain richer biological information. Here, we established a primary cell line of relapsed MPNST RsNF cells derived from a patient diagnosed with NF1 and detected the presence of NF1 mutations and SUZ12 somatic mutations through whole-exome sequencing(WES). Through tumor molecular marker targeted sequencing and single-cell transcriptome sequencing, it was found that chromosome 7 copy number variation (CNV) was gained in this cell line, and ZNF804B, EGFR, etc., were overexpressed on chromosome 7. Therefore, RsNF cells can be used as a useful tool in NF1-associated MPNST genomic amplification studies and to develop new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeritz RE, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA. 1997;278(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  2. Kallen ME, Hornick JL. The 2020 WHO classification: what’s new in soft tissue tumor pathology? Am J Surg Pathol. 2021;45(1):e1–23. https://doi.org/10.1097/pas.0000000000001552.

    Article  PubMed  Google Scholar 

  3. De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014;514(7521):247–51. https://doi.org/10.1038/nature13561.

    Article  PubMed  CAS  Google Scholar 

  4. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46(11):1227–32. https://doi.org/10.1038/ng.3095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang M, Wang Y, Jones S, Sausen M, McMahon K, Sharma R, et al. Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46(11):1170–2. https://doi.org/10.1038/ng.3116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li W, Hu C, Zhang X, Wang B, Li Z, Ling M, et al. suz12 loss amplifies the Ras/ERK pathway by activating adenylate cyclase 1 in NF1-associated neurofibromas. Front Oncol. 2021;11:738300. https://doi.org/10.3389/fonc.2021.738300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bottillo I, Ahlquist T, Brekke H, Danielsen SA, van den Berg E, Mertens F, et al. Germline and somatic NF1 mutations in sporadic and NF1-associated malignant peripheral nerve sheath tumours. J Pathol. 2009;217(5):693–701. https://doi.org/10.1002/path.2494.

    Article  PubMed  CAS  Google Scholar 

  8. Kaplan HG, Rostad S, Ross JS, Ali SM, Millis SZ. Genomic profiling in patients with malignant peripheral nerve sheath tumors reveals multiple pathways with targetable mutations. J Natl Compr Canc Netw. 2018;16(8):967–74. https://doi.org/10.6004/jnccn.2018.7033.

    Article  PubMed  CAS  Google Scholar 

  9. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405. https://doi.org/10.1007/s00401-011-0802-6.

    Article  PubMed  CAS  Google Scholar 

  10. Je EM, An CH, Yoo NJ, Lee SH. Mutational analysis of PIK3CA, JAK2, BRAF, FOXL2, IDH1, AKT1 and EZH2 oncogenes in sarcomas. APMIS. 2012;120(8):635–9. https://doi.org/10.1111/j.1600-0463.2012.02878.x.

    Article  PubMed  CAS  Google Scholar 

  11. Holtkamp N, Malzer E, Zietsch J, Okuducu AF, Mucha J, Mawrin C, et al. EGFR and erbB2 in malignant peripheral nerve sheath tumors and implications for targeted therapy. Neuro Oncol. 2008;10(6):946–57. https://doi.org/10.1215/15228517-2008-053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Perrone F, Da Riva L, Orsenigo M, Losa M, Jocollè G, Millefanti C, et al. PDGFRA, PDGFRB, EGFR, and downstream signaling activation in malignant peripheral nerve sheath tumor. Neuro Oncol. 2009;11(6):725–36. https://doi.org/10.1215/15228517-2009-003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Peacock JD, Pridgeon MG, Tovar EA, Essenburg CJ, Bowman M, Madaj Z, et al. Genomic status of MET potentiates sensitivity to MET and MEK inhibition in NF1-related malignant peripheral nerve sheath tumors. Cancer Res. 2018;78(13):3672–87. https://doi.org/10.1158/0008-5472.Can-17-3167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mantripragada KK, Spurlock G, Kluwe L, Chuzhanova N, Ferner RE, Frayling IM, et al. High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res. 2008;14(4):1015–24. https://doi.org/10.1158/1078-0432.Ccr-07-1305.

    Article  PubMed  CAS  Google Scholar 

  15. Hirbe AC, Kaushal M, Sharma MK, Dahiya S, Pekmezci M, Perry A, et al. Clinical genomic profiling identifies TYK2 mutation and overexpression in patients with neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Cancer. 2017;123(7):1194–201. https://doi.org/10.1002/cncr.30455.

    Article  PubMed  CAS  Google Scholar 

  16. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123(1):340–7. https://doi.org/10.1172/jci60578.

    Article  PubMed  CAS  Google Scholar 

  17. Kolberg M, Høland M, Lind GE, Ågesen TH, Skotheim RI, Hall KS, et al. Protein expression of BIRC5, TK1, and TOP2A in malignant peripheral nerve sheath tumours—a prognostic test after surgical resection. Mol Oncol. 2015;9(6):1129–39. https://doi.org/10.1016/j.molonc.2015.02.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD, et al. Canonical Wnt/β-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov. 2013;3(6):674–89. https://doi.org/10.1158/2159-8290.Cd-13-0081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zou CY, Smith KD, Zhu QS, Liu J, McCutcheon IE, Slopis JM, et al. Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor. Mol Cancer Ther. 2009;8(5):1157–68. https://doi.org/10.1158/1535-7163.Mct-08-1008.

    Article  PubMed  CAS  Google Scholar 

  20. Maki RG, D’Adamo DR, Keohan ML, Saulle M, Schuetze SM, Undevia SD, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27(19):3133–40. https://doi.org/10.1200/jco.2008.20.4495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chugh R, Wathen JK, Maki RG, Benjamin RS, Patel SR, Meyers PA, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J Clin Oncol. 2009;27(19):3148–53. https://doi.org/10.1200/jco.2008.20.5054.

    Article  PubMed  CAS  Google Scholar 

  22. Schuetze SM, Wathen JK, Lucas DR, Choy E, Samuels BL, Staddon AP, et al. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer. 2016;122(6):868–74. https://doi.org/10.1002/cncr.29858.

    Article  PubMed  CAS  Google Scholar 

  23. Dickson MA, Mahoney MR, Tap WD, D’Angelo SP, Keohan ML, Van Tine BA, et al. Phase II study of MLN8237 (Alisertib) in advanced/metastatic sarcoma. Ann Oncol. 2016;27(10):1855–60. https://doi.org/10.1093/annonc/mdw281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Oyama R, Kito F, Takahashi M, Hattori E, Noguchi R, Takai Y, et al. Establishment and characterization of patient-derived cancer models of malignant peripheral nerve sheath tumors. Cancer Cell Int. 2020;20:58. https://doi.org/10.1186/s12935-020-1128-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002;62(5):1573–7.

    PubMed  CAS  Google Scholar 

  26. Zhang X, Lou HE, Gopalan V, Liu Z, Jafarah HM, Lei H, et al. Single-cell sequencing reveals activation of core transcription factors in PRC2-deficient malignant peripheral nerve sheath tumor. Cell Rep. 2022;40(12):111363. https://doi.org/10.1016/j.celrep.2022.111363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20. https://doi.org/10.1038/nbt.4096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ortega MA, Poirion O, Zhu X, Huang S, Wolfgruber TK, Sebra R, et al. Using single-cell multiple omics approaches to resolve tumor heterogeneity. Clin Transl Med. 2017;6(1):46. https://doi.org/10.1186/s40169-017-0177-y.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20(10):555–72. https://doi.org/10.1038/s41568-020-0290-x.

    Article  PubMed  CAS  Google Scholar 

  31. Fletcher JA, Kozakewich HP, Hoffer FA, Lage JM, Weidner N, Tepper R, et al. Diagnostic relevance of clonal cytogenetic aberrations in malignant soft-tissue tumors. N Engl J Med. 1991;324(7):436–42. https://doi.org/10.1056/nejm199102143240702.

    Article  PubMed  CAS  Google Scholar 

  32. Perrin GQ, Li H, Fishbein L, Thomson SA, Hwang MS, Scarborough MT, et al. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation. Lab Invest. 2007;87(11):1092–102. https://doi.org/10.1038/labinvest.3700675.

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Zhang X, Fishbein L, Kweh F, Campbell-Thompson M, Perrin GQ, et al. Analysis of steroid hormone effects on xenografted human NF1 tumor schwann cells. Cancer Biol Ther. 2010;10(8):758–64. https://doi.org/10.4161/cbt.10.8.12878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Perrin GQ, Fishbein L, Thomson SA, Thomas SL, Stephens K, Garbern JY, et al. Plexiform-like neurofibromas develop in the mouse by intraneural xenograft of an NF1 tumor-derived Schwann cell line. J Neurosci Res. 2007;85(6):1347–57. https://doi.org/10.1002/jnr.21226.

    Article  PubMed  CAS  Google Scholar 

  35. Glover TW, Stein CK, Legius E, Andersen LB, Brereton A, Johnson S. Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromosomes Cancer. 1991;3(1):62–70. https://doi.org/10.1002/gcc.2870030111.

    Article  PubMed  CAS  Google Scholar 

  36. DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992;69(2):265–73. https://doi.org/10.1016/0092-8674(92)90407-4.

    Article  PubMed  CAS  Google Scholar 

  37. Legius E, Dierick H, Wu R, Hall BK, Marynen P, Cassiman JJ, et al. TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer. 1994;10(4):250–5. https://doi.org/10.1002/gcc.2870100405.

    Article  PubMed  CAS  Google Scholar 

  38. Dahlberg WK, Little JB, Fletcher JA, Suit HD, Okunieff P. Radiosensitivity in vitro of human soft tissue sarcoma cell lines and skin fibroblasts derived from the same patients. Int J Radiat Biol. 1993;63(2):191–8. https://doi.org/10.1080/09553009314550251.

    Article  PubMed  CAS  Google Scholar 

  39. Huynh DP, Pulst SM. Neurofibromatosis 2 antisense oligodeoxynucleotides induce reversible inhibition of schwannomin synthesis and cell adhesion in STS26T and T98G cells. Oncogene. 1996;13(1):73–84.

    PubMed  CAS  Google Scholar 

  40. Sin Y, Yoshimatsu Y, Noguchi R, Tsuchiya R, Ono T, Akiyama T, et al. Establishment and characterization of NCC-MPNST6-C1: a novel patient-derived cell line of malignant peripheral nerve sheath tumors. Hum Cell. 2022;35(1):400–7. https://doi.org/10.1007/s13577-021-00643-8.

    Article  PubMed  CAS  Google Scholar 

  41. Tolomeo D, Agostini A, Macchia G, L’Abbate A, Severgnini M, Cifola I, et al. BL1391: an established cell line from a human malignant peripheral nerve sheath tumor with unique genomic features. Hum Cell. 2021;34(1):238–45. https://doi.org/10.1007/s13577-020-00418-7.

    Article  PubMed  CAS  Google Scholar 

  42. Higham CS, Dombi E, Rogiers A, Bhaumik S, Pans S, Connor SEJ, et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1 associated malignant peripheral nerve sheath tumors. Neuro Oncol. 2018;20(6):818–25. https://doi.org/10.1093/neuonc/noy013.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miettinen MM, Antonescu CR, Fletcher CDM, Kim A, Lazar AJ, Quezado MM, et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol. 2017;67:1–10. https://doi.org/10.1016/j.humpath.2017.05.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lemberg KM, Wang J, Pratilas CA. From genes to -omics: the evolving molecular landscape of malignant peripheral nerve sheath tumor. Genes (Basel). 2020;11:6. https://doi.org/10.3390/genes11060691.

    Article  CAS  Google Scholar 

  45. Brohl AS, Kahen E, Yoder SJ, Teer JK, Reed DR. The genomic landscape of malignant peripheral nerve sheath tumors: diverse drivers of Ras pathway activation. Sci Rep. 2017;7(1):14992. https://doi.org/10.1038/s41598-017-15183-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Schmidt H, Taubert H, Meye A, Würl P, Bache M, Bartel F, et al. Gains in chromosomes 7, 8q, 15q and 17q are characteristic changes in malignant but not in benign peripheral nerve sheath tumors from patients with Recklinghausen’s disease. Cancer Lett. 2000;155(2):181–90. https://doi.org/10.1016/s0304-3835(00)00426-2.

    Article  PubMed  CAS  Google Scholar 

  47. Schmidt H, Würl P, Taubert H, Meye A, Bache M, Holzhausen HJ, et al. Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer. 1999;25(3):205–11.

    Article  PubMed  CAS  Google Scholar 

  48. Liang JQ, Teoh N, Xu L, Pok S, Li X, Chu ESH, et al. Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun. 2018;9(1):4490. https://doi.org/10.1038/s41467-018-06931-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Juhlin CC, Goh G, Healy JM, Fonseca AL, Scholl UI, Stenman A, et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J Clin Endocrinol Metab. 2015;100(3):E493-502. https://doi.org/10.1210/jc.2014-3282.

    Article  PubMed  CAS  Google Scholar 

  50. León-Mateos L, Abalo A, Casas H, Anido U, Rapado-González Ó, Vieito M, et al. Global gene expression characterization of circulating tumor cells in metastasic castration-resistant prostate cancer patients. J Clin Med. 2020;9:7. https://doi.org/10.3390/jcm9072066.

    Article  CAS  Google Scholar 

  51. Zhao Y, Yang J, Chen Z, Gao Z, Zhou F, Li X, et al. Identification of somatic alterations in stage I lung adenocarcinomas by next-generation sequencing. Genes Chromosomes Cancer. 2014;53(4):289–98. https://doi.org/10.1002/gcc.22138.

    Article  PubMed  CAS  Google Scholar 

  52. Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer. 2022;3(2):232–50. https://doi.org/10.1038/s43018-022-00337-6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, et al. FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest. 2020;130(9):4871–87. https://doi.org/10.1172/jci130323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Torrini C, Nguyen TTT, Shu C, Mela A, Humala N, Mahajan A, et al. Lactate is an epigenetic metabolite that drives survival in model systems of glioblastoma. Mol Cell. 2022;82(16):3061-76.e6. https://doi.org/10.1016/j.molcel.2022.06.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhan Q, Yi K, Cui X, Li X, Yang S, Wang Q, et al. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro Oncol. 2022;24(11):1871–83. https://doi.org/10.1093/neuonc/noac071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tan XP, He Y, Yang J, Wei X, Fan YL, Zhang GG, et al. Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct Target Ther. 2023;8(1):14. https://doi.org/10.1038/s41392-022-01248-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13(1):4. https://doi.org/10.1186/s13045-019-0829-z.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. Int J Cancer. 2020;146(8):2078–88. https://doi.org/10.1002/ijc.32662.

    Article  PubMed  CAS  Google Scholar 

  59. Shih TC, Fan Y, Kiss S, Li X, Deng XN, Liu R, et al. Galectin-1 inhibition induces cell apoptosis through dual suppression of CXCR4 and Ras pathways in human malignant peripheral nerve sheath tumors. Neuro Oncol. 2019;21(11):1389–400. https://doi.org/10.1093/neuonc/noz093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Beijing Tiantan Hospital for providing clinical specimens and pathologists for histopathological classification and immunohistochemical guidance in this article.

Funding

Platform Construction of Basic Research and Clinical Translation of Nervous System Injury (PXM2021_026280_000006, Beijing Municipal Health Commission).

Author information

Authors and Affiliations

Authors

Contributions

XZ contributed to the conception and design of the study and the experimental operations. CH contributed to the acquisition and analysis of data. DL and SL contributed to the drafting of the text and the preparation of the figures. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Song Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics statements

This study was approved by the ethical committee of the National Cancer Center, and all patients in this study provided written informed consent (2004050).The study using animal models was approved by the ethics committee of Beijing Tiantan Hospital Ethics Committee of Capital Medical University (BNI202304002).

Inclusion of identifiable human data

No potentially identifiable human images or data are presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, C., Li, D. et al. Establishment and characterization of a recurrent malignant peripheral nerve sheath tumor cell line: RsNF. Human Cell 37, 345–355 (2024). https://doi.org/10.1007/s13577-023-01000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01000-7

Keywords

Navigation