Skip to main content

Advertisement

Log in

MiR-223-3p-loaded exosomes from bronchoalveolar lavage fluid promote alveolar macrophage autophagy and reduce acute lung injury by inhibiting the expression of STK39

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

This study investigated the molecular mechanism by which bronchoalveolar lavage fluid exosomes (BALF-exo) alleviated acute lung injury (ALI). BALF-exo was isolated from mice. LPS was used to induce inflammation in rat alveolar macrophages (NR8383). NR8383 cell models were treated with BALF-exo or BALF-exo loaded with miR-223-3p mimics/inhibitors, or STK39 was overexpressed in NR8383 cells before LPS and BALF-exo treatment. These cells were subjected to apoptosis, autophagy, and inflammation assays. RNA immunoprecipitation and dual-luciferase reporter assay were conducted to verify the binding between miR-223-3p and STK39. LPS-induced ALI mouse models were treated with BALF-exo loaded with miR-223-3p mimics. miR-223-3p was lowly expressed in BALF-exo from LPS-treated mice. BALF-exo loaded with miR-223-3p mimics increased viability and autophagy and decreased apoptosis and inflammation in NR8383 cell models. Inhibition of miR-223-3p in BALF-exo or overexpression of STK39 in NR8383 cells repressed the therapeutic effect of BALF-exo in LPS-treated NR8383 cells. STK39 was a target gene of miR-223-3p. miR-223-3p shuttled by BALF-exo negatively regulated the expression of STK39 in NR8383 cells. BALF-exo loaded with miR-223-3p mimics also reduced lung injuries in ALI mice. In conclusion, miR-223-3p loaded in BALF-exo alleviates ALI by targeting STK39 in alveolar macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140:345–50.

    Article  CAS  PubMed  Google Scholar 

  2. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.

    Article  CAS  PubMed  Google Scholar 

  3. Mowery NT, Terzian WTH, Nelson AC. Acute lung injury. Curr Probl Surg. 2020;57:100777.

    Article  PubMed  Google Scholar 

  4. Hughes KT, Beasley MB. Pulmonary manifestations of acute lung injury: more than just diffuse alveolar damage. Arch Pathol Lab Med. 2017;141:916–22.

    Article  PubMed  Google Scholar 

  5. Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Respir Res. 2018;19:50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hou L, Yang Z, Wang Z, et al. NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Lab Invest. 2018;98:1052–64.

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Zhang Z, Zhuo Y, et al. Resveratrol alleviates sepsis-induced acute lung injury by suppressing inflammation and apoptosis of alveolar macrophage cells. Am J Transl Res. 2018;10:1961–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:582–92.

    Article  PubMed  Google Scholar 

  9. Qian Q, Cao X, Wang B, et al. Endoplasmic reticulum stress potentiates the autophagy of alveolar macrophage to attenuate acute lung injury and airway inflammation. Cell Cycle. 2020;19:567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng W, Peng F, Lou Y, et al. Autophagy alleviates mitochondrial DAMP-induced acute lung injury by inhibiting NLRP3 inflammasome. Life Sci. 2021;265:118833.

    Article  CAS  PubMed  Google Scholar 

  11. Carnino JM, Lee H, Jin Y. Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir Res. 2019;20:240.

    Article  PubMed  PubMed Central  Google Scholar 

  12. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferguson SW, Nguyen J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release. 2016;228:179–90.

    Article  CAS  PubMed  Google Scholar 

  14. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ju M, Liu B, He H, et al. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting in fl ammation and apoptosis through modulating TLR4/MyD88/NF-kappaB pathway. Cell Cycle. 2018;17:2001–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie W, Lu Q, Wang K, et al. miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J Cell Physiol. 2018;233:6615–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yi X, Wei X, Lv H, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Exp Cell Res. 2019;383:111454.

    Article  CAS  PubMed  Google Scholar 

  18. Gallolu Kankanamalage S, Lee AY, Wichaidit C, et al. WNK1 is an unexpected autophagy inhibitor. Autophagy. 2017;13:969–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu Z, Shen J, Chen X, et al. Propofol upregulates MicroRNA-30b to inhibit excessive autophagy and apoptosis and attenuates ischemia/reperfusion injury in vitro and in patients. Oxid Med Cell Longev. 2022;2022:2109891.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med. 2017;5:524–34.

    Article  PubMed  Google Scholar 

  21. Yang B, Chen Y, Shi J. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31:e1802896.

    Article  PubMed  Google Scholar 

  22. Ye C, Li H, Bao M, Zhuo R, Jiang G, Wang W. Alveolar macrophage-derived exosomes modulate severity and outcome of acute lung injury. Aging (Albany NY). 2020;12:6120–8.

    Article  CAS  Google Scholar 

  23. Zhou Y, Li P, Goodwin AJ, et al. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit Care. 2019;23:44.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang K, Yang J, Guo S, Zhao G, Wu H, Deng G. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation. Mol Ther. 2019;27:1758–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei X, Yi X, Lv H, et al. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy. Cell Death Dis. 2020;11:657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ji Q, Xu X, Song Q, et al. miR-223-3p Inhibits Human Osteosarcoma Metastasis and Progression by Directly Targeting CDH6. Mol Ther. 2018;26:1299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han LL, Zhou XJ, Li FJ, et al. MiR-223-3p promotes the growth and invasion of neuroblastoma cell via targeting FOXO1. Eur Rev Med Pharmacol Sci. 2019;23:8984–90.

    PubMed  Google Scholar 

  28. Zhu Y, Li K, Yan L, He Y, Wang L, Sheng L. miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer. Acta Biochim Biophys Sin (Shanghai). 2020;52:150–9.

    Article  CAS  Google Scholar 

  29. Zhang D, Lee H, Wang X, et al. A potential role of microvesicle-containing miR-223/142 in lung inflammation. Thorax. 2019;74:865–74.

    Article  PubMed  Google Scholar 

  30. Kim GD, Ng HP, Patel N, Mahabeleshwar GH. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation. FASEB J. 2019;33:10902–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu J, Niu P, Zhao Y, et al. Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ss, and TNF-alpha, and the TLR4/TLR2/NF-kappaB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells. PLoS ONE. 2019;14:e0212063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Y, Zhang T, Yan Y, et al. MicroRNA-223–3p regulates allergic in fl ammation by targeting INPP4A. Braz J Otorhinolaryngol. 2020;87:591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fava C, Danese E, Montagnana M, et al. Serine/threonine kinase 39 is a candidate gene for primary hypertension especially in women: results from two cohort studies in Swedes. J Hypertens. 2011;29:484–91.

    Article  CAS  PubMed  Google Scholar 

  34. Shin DJ, Lee SH, Park S, Jang Y. Association between serine/threonine kinase 39 gene polymorphism, hypertension, and other cardiovascular risk factors in Koreans. Korean Circ J. 2013;43:13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao H, Qi Y, Wang Y, et al. Interactive contribution of serine/threonine kinase 39 gene multiple polymorphisms to hypertension among northeastern Han Chinese. Sci Rep. 2014;4:5116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang T, Zhou Y, Cao Y, Tao J, Zhou ZH, Hang DH. STK39, overexpressed in osteosarcoma, regulates osteosarcoma cell invasion and proliferation. Oncol Lett. 2017;14:4599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li C, Wang A, Chen Y, Liu Y, Zhang H, Zhou J. MicroRNA2995p inhibits cell metastasis in breast cancer by directly targeting serine/threonine kinase 39. Oncol Rep. 2020;43:1221–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Q, Zhu Y, Liu L, et al. STK39 blockage by RNA interference inhibits the proliferation and induces the apoptosis of renal cell carcinoma. Onco Targets Ther. 2018;11:1511–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.

    Article  CAS  PubMed  Google Scholar 

  40. Hong J, Mo S, Gong F, et al. lncRNA-SNHG14 plays a role in acute lung injury induced by lipopolysaccharide through regulating autophagy via miR-223-3p/Foxo3a. Mediat Inflamm. 2021;2021:7890288.

    Article  Google Scholar 

  41. Tan HY, Qing B, Luo XM, Liang HX. Downregulation of miR-223 promotes HMGB2 expression and induces oxidative stress to activate JNK and promote autophagy in an in vitro model of acute lung injury. J Inflamm (Lond). 2021;18:29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HN and LHX conceived the ideas. HN and LHX designed the experiments. THY, DXY and LHX performed the experiments. LHX and THY analyzed the data. HN and THY provided critical materials. DXY and SL wrote the manuscript. HN supervised the study. HN, LHX and QB revised the manuscript. All the authors have read and approved the final version for publication.

Corresponding author

Correspondence to Hengxing Liang.

Ethics declarations

Conflict of interests

This study declares no conflict of interests.

Ethical approval

All animal experiments were approved by the Animal Care and Use Committee of The Second Xiangya Hospital of Central South University and abided by the guidelines for laboratory animal care and use issued by the National Institutes of Health. Additionally, all the experiments were carried out with the best efforts to reduce the pain and number of experimental animals.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 410 KB)

Supplementary file2 (TIF 410 KB)

Supplementary file3 (TIF 431 KB)

Supplementary file4 (TIF 343 KB)

Supplementary file5 (TIF 376 KB)

Supplementary file6 (TIF 354 KB)

Supplementary file7 (TIF 288 KB)

Supplementary file8 (TIF 367 KB)

Supplementary file9 (TIF 330 KB)

Supplementary file10 (TIF 598 KB)

Supplementary file11 (TIF 364 KB)

Supplementary file12 (TIF 349 KB)

Supplementary file13 (TIF 477 KB)

Supplementary file14 (TIF 331 KB)

Supplementary file15 (TIF 353 KB)

Supplementary file16 (TIF 386 KB)

Supplementary file17 (TIF 361 KB)

Supplementary file18 (TIF 448 KB)

Supplementary file19 (TIF 344 KB)

Supplementary file20 (TIF 749 KB)

Supplementary file21 (TIF 464 KB)

Supplementary file22 (TIF 369 KB)

Supplementary file23 (TIF 461 KB)

Supplementary file24 (TIF 391 KB)

Supplementary file25 (TIF 398 KB)

Supplementary file26 (TIF 440 KB)

Supplementary file27 (TIF 472 KB)

Supplementary file28 (TIF 439 KB)

Supplementary file29 (TIF 786 KB)

Supplementary file30 (TIF 448 KB)

Supplementary file31 (TIF 356 KB)

Supplementary file32 (TIF 412 KB)

Supplementary file33 (TIF 373 KB)

Supplementary file34 (TIF 308 KB)

Supplementary file35 (TIF 316 KB)

Supplementary file36 (TIF 744 KB)

Supplementary file37 (TIF 418 KB)

Supplementary file38 (TIF 391 KB)

Supplementary file39 (TIF 507 KB)

Supplementary file40 (TIF 360 KB)

Supplementary file41 (TIF 360 KB)

Supplementary file42 (TIF 381 KB)

Supplementary file43 (TIF 492 KB)

Supplementary file44 (TIF 389 KB)

Supplementary file45 (TIF 338 KB)

Supplementary file46 (TIF 385 KB)

Supplementary file47 (TIF 397 KB)

Supplementary file48 (TIF 375 KB)

Supplementary file49 (TIF 384 KB)

Supplementary file50 (TIF 349 KB)

Supplementary file51 (TIF 390 KB)

Supplementary file52 (TIF 310 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, N., Tan, H., Deng, X. et al. MiR-223-3p-loaded exosomes from bronchoalveolar lavage fluid promote alveolar macrophage autophagy and reduce acute lung injury by inhibiting the expression of STK39. Human Cell 35, 1736–1751 (2022). https://doi.org/10.1007/s13577-022-00762-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00762-w

Keywords

Navigation