Skip to main content

Advertisement

Log in

Human placental mesenchymal stromal cell therapy restores the cytokine efflux and insulin signaling in the skeletal muscle of obesity-induced type 2 diabetes rat model

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Obesity poses a significant risk factor for the onset of metabolic syndrome with allied complications, wherein mesenchymal stem cell therapy is seen as a promising treatment for obesity-induced metabolic syndrome. In the present study, we aim to explore the beneficial effects of the human placental mesenchymal stromal cells (P-MSCs) on obesity-associated insulin resistance (IR) including inflammation. To understand this, we have analyzed the peripheral blood glucose, serum insulin levels by ELISA, and the glucose uptake capacity of skeletal muscle by a 2-NBDG assay using flow cytometry in WNIN/GR-Ob rats treated with and without P-MSCs. Also, we have studied insulin signaling and cytokine profile in the skeletal muscle by western blotting, dot blotting, and Multiplex-ELISA techniques. The skeletal muscle of WNIN/GR-Ob rats demonstrates dysregulation of cytokines, altered glucose uptake vis-a-vis insulin signaling. However, P-MSCs’ treatment was effective in WNIN/GR-Ob rats as compared to its control, to restore HOMA-IR, re-establishes dysregulated cytokines and PI3K-Akt pathway in addition to enhanced Glut4 expression and glucose uptake studied in skeletal muscle. Overall, our data advocate the beneficial effects of P-MSCs to ameliorate inflammatory milieu, improve insulin sensitivity, and normalize glucose homeostasis underlining the Ob-T2D conditions, and we attribute for immunomodulatory, paracrine, autocrine, and multipotent functions of P-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777–822. https://doi.org/10.1210/er.2008-0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harishankar N, Vajreswari A, Giridharan NV. WNIN/GR-Ob—an insulin-resistant obese rat model from inbred WNIN strain. Indian J Med Res. 2011;134(3):320–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Giridharan NV, Lakshmi CN, Raghuramulu N. Identification of impaired-glucose-tolerant animals from a Wistar inbred rat colony. Lab Anim Sci. 1997;47(4):428–31.

    CAS  PubMed  Google Scholar 

  4. Kalashikam RR, Battula KK, Kirlampalli V, Friedman JM, Nappanveettil G. Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor. PLoS ONE. 2013;8(10): e77679. https://doi.org/10.1371/journal.pone.0077679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pragasam SSJ, Venkatesan V. Metabolic syndrome predisposes to osteoarthritis: lessons from model system. Cartilage. 2020. https://doi.org/10.1177/1947603520980161.

    Article  PubMed  Google Scholar 

  6. Singh H, Ganneru S, Malakapalli V, Chalasani M, Nappanveettil G, Bhonde RR, et al. Islet adaptation to obesity and insulin resistance in WNIN/GR-Ob rats. Islets. 2014;6(5–6): e998099. https://doi.org/10.1080/19382014.2014.998099.

    Article  PubMed  Google Scholar 

  7. Madhira SL, Challa SS, Chalasani M, Nappanveethl G, Bhonde RR, Ajumeera R, et al. Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats. PLoS ONE. 2012;7(10): e48061. https://doi.org/10.1371/journal.pone.0048061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giridharan NV. Glucose & energy homeostasis: lessons from animal studies. Indian J Med Res. 2018;148(5):659–69. https://doi.org/10.4103/ijmr.IJMR_1737_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeyakumar SM, Lopamudra P, Padmini S, Balakrishna N, Giridharan NV, Vajreswari A. Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutr Metab. 2009;6:27. https://doi.org/10.1186/1743-7075-6-27.

    Article  CAS  Google Scholar 

  10. Jeyakumar SM, Sheril A, Vajreswari A. Vitamin A improves hyperglycemia and glucose-intolerance through regulation of intracellular signaling pathways and glycogen synthesis in WNIN/GR-Ob obese rat model. Prev Nutr Food Sci. 2017;22(3):172–83. https://doi.org/10.3746/pnf.2017.22.3.172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tumova J, Andel M, Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res. 2016;65(2):193–207. https://doi.org/10.33549/physiolres.932993.

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Investig. 2017;127(1):43–54. https://doi.org/10.1172/jci88880.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Investig. 2006;116(7):1793–801. https://doi.org/10.1172/jci29069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol. 2018;9(1):1–58. https://doi.org/10.1002/cphy.c170040.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mourkioti F, Rosenthal N. NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med (Berl). 2008;86(7):747–59. https://doi.org/10.1007/s00109-008-0308-4.

    Article  CAS  Google Scholar 

  16. Proto JD, Tang Y, Lu A, Chen WC, Stahl E, Poddar M, et al. NF-κB inhibition reveals a novel role for HGF during skeletal muscle repair. Cell Death Dis. 2015;6(4): e1730. https://doi.org/10.1038/cddis.2015.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep. 2020;8(19): e14607. https://doi.org/10.14814/phy2.14607.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48(6):1270–4. https://doi.org/10.2337/diabetes.48.6.1270.

    Article  CAS  PubMed  Google Scholar 

  19. Marrocco V, Fiore P, Madaro L, Crupi A, Lozanoska-Ochser B, Bouché M. Targeting PKCθ in skeletal muscle and muscle diseases: good or bad? Biochem Soc Trans. 2014;42(6):1550–5. https://doi.org/10.1042/bst20140207.

    Article  CAS  PubMed  Google Scholar 

  20. Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr Rev. 2021;42(1):1–28. https://doi.org/10.1210/endrev/bnaa027.

    Article  PubMed  Google Scholar 

  21. Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes. 1997;46(8):1360–3. https://doi.org/10.2337/diab.46.8.1360.

    Article  CAS  PubMed  Google Scholar 

  22. Pratipanawatr W, Pratipanawatr T, Cusi K, Berria R, Adams JM, Jenkinson CP, et al. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes. 2001;50(11):2572–8. https://doi.org/10.2337/diabetes.50.11.2572.

    Article  CAS  PubMed  Google Scholar 

  23. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45. https://doi.org/10.1146/annurev-immunol-031210-101322.

    Article  CAS  PubMed  Google Scholar 

  24. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspect Biol. 2014. https://doi.org/10.1101/cshperspect.a009191.

    Article  Google Scholar 

  25. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11(2):155–61. https://doi.org/10.1038/ni.1836.

    Article  CAS  PubMed  Google Scholar 

  26. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–20. https://doi.org/10.1038/ni.2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Song L, Strange C, Dong X, Wang H. Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes. Mol Ther. 2018;26(8):1921–30. https://doi.org/10.1016/j.ymthe.2018.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaochite JN, Caliari-Oliveira C, de Souza LE, Neto LS, Palma PV, Covas DT, et al. Therapeutic efficacy and biodistribution of allogeneic mesenchymal stem cells delivered by intrasplenic and intrapancreatic routes in streptozotocin-induced diabetic mice. Stem Cell Res Ther. 2015;6(1):31. https://doi.org/10.1186/s13287-015-0017-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes. 2012;61(6):1616–25. https://doi.org/10.2337/db11-1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venkatesan V, Chalsani M, Nawaz SS, Bhonde RR, Challa SS, Nappanveettil G. Optimization of condition(s) towards establishment of primary islet cell cultures from WNIN/Ob mutant rat. Cytotechnology. 2012;64(2):139–44. https://doi.org/10.1007/s10616-011-9409-y.

    Article  CAS  PubMed  Google Scholar 

  31. Venkatesan V, Gopurappilly R, Goteti SK, Dorisetty RK, Bhonde RR. Pancreatic progenitors: the shortest route to restore islet cell mass. Islets. 2011;3(6):295–301. https://doi.org/10.4161/isl.3.6.17704.

    Article  PubMed  Google Scholar 

  32. Kotikalapudi N, Sampath SJP, Sukesh Narayan S, Ramesh RB, Nemani H, Mungamuri SK, et al. The promise(s) of mesenchymal stem cell therapy in averting preclinical diabetes: lessons from in vivo and in vitro model systems. Sci Rep. 2021;11(1):16983. https://doi.org/10.1038/s41598-021-96121-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen G, Fan XY, Zheng XP, Jin YL, Liu Y, Liu SC. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice. Stem Cell Res Ther. 2020;11(1):401. https://doi.org/10.1186/s13287-020-01865-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathew SA, Chandravanshi B, Bhonde R. Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci. 2017;182:85–92. https://doi.org/10.1016/j.lfs.2017.06.016.

    Article  CAS  PubMed  Google Scholar 

  35. Mathew SA, Bhonde RR. Omega-3 polyunsaturated fatty acids promote angiogenesis in placenta derived mesenchymal stromal cells. Pharmacol Res. 2018;132:90–8. https://doi.org/10.1016/j.phrs.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  36. Roman EA, Reis D, Romanatto T, Maimoni D, Ferreira EA, Santos GA, et al. Central leptin action improves skeletal muscle AKT, AMPK, and PGC1 alpha activation by hypothalamic PI3K-dependent mechanism. Mol Cell Endocrinol. 2010;314(1):62–9. https://doi.org/10.1016/j.mce.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  37. Wong N, Fam BC, Cempako GR, Steinberg GR, Walder K, Kay TW, et al. Deficiency in interferon-gamma results in reduced body weight and better glucose tolerance in mice. Endocrinology. 2011;152(10):3690–9. https://doi.org/10.1210/en.2011-0288.

    Article  CAS  PubMed  Google Scholar 

  38. Lecube A, Hernández C, Genescà J, Simó R. Proinflammatory cytokines, insulin resistance, and insulin secretion in chronic hepatitis C patients: a case-control study. Diabetes Care. 2006;29(5):1096–101. https://doi.org/10.2337/diacare.2951096.

    Article  CAS  PubMed  Google Scholar 

  39. Mungamuri SK, Qiao RF, Yao S, Manfredi JJ, Gu W, Aaronson SA. USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation. Cell Rep. 2016;14(11):2528–37. https://doi.org/10.1016/j.celrep.2016.02.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen Q, Rong P, Zhu S, Yang X, Ouyang Q, Wang HY, et al. Targeting RalGAPα1 in skeletal muscle to simultaneously improve postprandial glucose and lipid control. Sci Adv. 2019;5(4):eaav4116. https://doi.org/10.1126/sciadv.aav4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. TeSlaa T, Teitell MA. Techniques to monitor glycolysis. Methods Enzymol. 2014;542:91–114. https://doi.org/10.1016/b978-0-12-416618-9.00005-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mungamuri SK, Wang S, Manfredi JJ, Gu W, Aaronson SA. Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene. 2015;34(19):2461–70. https://doi.org/10.1038/onc.2014.198.

    Article  CAS  PubMed  Google Scholar 

  43. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2(1):17. https://doi.org/10.1186/2162-3619-2-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, et al. CD133 positive progenitor endothelial cell lines from human cord blood. Cytom Part A. 2011;79(8):594–602. https://doi.org/10.1002/cyto.a.21092.

    Article  CAS  Google Scholar 

  45. Nishimura-Sakurai Y, Sakamoto N, Mogushi K, Nagaie S, Nakagawa M, Itsui Y, et al. Comparison of HCV-associated gene expression and cell signaling pathways in cells with or without HCV replicon and in replicon-cured cells. J Gastroenterol. 2010;45(5):523–36. https://doi.org/10.1007/s00535-009-0162-3.

    Article  CAS  PubMed  Google Scholar 

  46. Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, et al. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med. 2021;6(1):14. https://doi.org/10.1038/s41536-021-00122-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koyama N, Okubo Y, Nakao K, Osawa K, Fujimura K, Bessho K. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sci. 2011;89(19–20):741–7. https://doi.org/10.1016/j.lfs.2011.09.005.

    Article  CAS  PubMed  Google Scholar 

  48. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95. https://doi.org/10.2337/diacare.27.6.1487.

    Article  PubMed  Google Scholar 

  49. Venkatesan V, Madhira SL, Malakapalli VM, Chalasani M, Shaik SN, Seshadri V, et al. Obesity, insulin resistance, and metabolic syndrome: a study in WNIN/Ob rats from a pancreatic perspective. Biomed Res Int. 2013;2013: 617569. https://doi.org/10.1155/2013/617569.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet (London, England). 2010;375(9733):2267–77. https://doi.org/10.1016/s0140-6736(10)60408-4.

    Article  CAS  Google Scholar 

  51. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S157–63. https://doi.org/10.2337/dc09-S302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol. 2017;315:18–26. https://doi.org/10.1016/j.cellimm.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  53. Fève B, Bastard JP. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(6):305–11. https://doi.org/10.1038/nrendo.2009.62.

    Article  CAS  PubMed  Google Scholar 

  54. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 2012;8(12):709–16. https://doi.org/10.1038/nrendo.2012.114.

    Article  CAS  PubMed  Google Scholar 

  55. Frydrych LM, Bian G, O’Lone DE, Ward PA, Delano MJ. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol. 2018;104(3):525–34. https://doi.org/10.1002/jlb.5vmr0118-021rr.

    Article  CAS  PubMed  Google Scholar 

  56. Bandaru P, Rajkumar H, Nappanveettil G. Altered or impaired immune response to hepatitis B vaccine in WNIN/GR-Ob rat: an obese rat model with impaired glucose tolerance. ISRN Endocrinol. 2011;2011: 980105. https://doi.org/10.5402/2011/980105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bandaru P, Rajkumar H, Nappanveettil G. Altered or impaired immune response upon vaccination in WNIN/Ob rats. Vaccine. 2011;29(16):3038–42. https://doi.org/10.1016/j.vaccine.2011.01.107.

    Article  CAS  PubMed  Google Scholar 

  58. Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells (Dayton, Ohio). 2014;32(6):1408–19. https://doi.org/10.1002/stem.1681.

    Article  CAS  Google Scholar 

  59. Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY, et al. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem. 2011;286(28):25007–15. https://doi.org/10.1074/jbc.M110.213108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Odegaard JI, Chawla A. Alternative macrophage activation and metabolism. Annu Rev Pathol. 2011;6:275–97. https://doi.org/10.1146/annurev-pathol-011110-130138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells (Dayton, Ohio). 2016;34(3):627–39. https://doi.org/10.1002/stem.2238.

    Article  CAS  Google Scholar 

  62. Sun X, Hao H, Han Q, Song X, Liu J, Dong L, et al. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats. Stem Cell Res Ther. 2017;8(1):241. https://doi.org/10.1186/s13287-017-0668-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16. https://doi.org/10.1038/ni.3002.

    Article  CAS  PubMed  Google Scholar 

  64. von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells (Dayton, Ohio). 2012;30(7):1575–8. https://doi.org/10.1002/stem.1118.

    Article  CAS  Google Scholar 

  65. Mäkelä T, Takalo R, Arvola O, Haapanen H, Yannopoulos F, Blanco R, et al. Safety and biodistribution study of bone marrow-derived mesenchymal stromal cells and mononuclear cells and the impact of the administration route in an intact porcine model. Cytotherapy. 2015;17(4):392–402. https://doi.org/10.1016/j.jcyt.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  66. Hamidian Jahromi S, Davies JE. Concise review: skeletal muscle as a delivery route for mesenchymal stromal cells. Stem Cells Transl Med. 2019;8(5):456–65. https://doi.org/10.1002/sctm.18-0208.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Estrada EJ, Valacchi F, Nicora E, Brieva S, Esteve C, Echevarria L, et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant. 2008;17(12):1295–304. https://doi.org/10.3727/096368908787648119.

    Article  PubMed  Google Scholar 

  68. Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009;18(10):1407–16. https://doi.org/10.1089/scd.2009.0164.

    Article  CAS  PubMed  Google Scholar 

  69. Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, et al. Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplant. 2014;23(9):1075–85. https://doi.org/10.3727/096368913x665576.

    Article  PubMed  Google Scholar 

  70. Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther. 2014;5(2):57. https://doi.org/10.1186/scrt446.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, et al. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Indian J Med Res. 2015;142(1):63–71. https://doi.org/10.4103/0971-5916.162116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong D, Zhuang X, Wang D, Qu H, Jiang Y, Li X, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab. 2014;60(12):1969–76. https://doi.org/10.7754/clin.lab.2014.140305.

    Article  CAS  PubMed  Google Scholar 

  73. Skyler JS, Fonseca VA, Segal KR, Rosenstock J. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care. 2015;38(9):1742–9. https://doi.org/10.2337/dc14-2830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu Z, Cai J, Chen J, Huang L, Wu W, Luo F, et al. Autologous bone marrow mononuclear cell infusion and hyperbaric oxygen therapy in type 2 diabetes mellitus: an open-label, randomized controlled clinical trial. Cytotherapy. 2014;16(2):258–65. https://doi.org/10.1016/j.jcyt.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  75. Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S, et al. Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev. 2017;26(7):471–81. https://doi.org/10.1089/scd.2016.0275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. R. Hemalatha, Director, ICMR-NIN, for providing the necessary infrastructure to conduct the current research and sanction intramural funding. We wish to thank the Animal Facility for all its support in carrying out these experiments. We also thank ICMR for the SRF manpower support.

Funding

The present study has been supported by ICMR-NIN intramural fundings (15-BS03 and 18-BS10) to Dr. VV, KN received a Senior Research Fellowship (5/3/8/31/ITR-F/2018-ITR) from ICMR for the present study.

Author information

Authors and Affiliations

Authors

Contributions

KN carried out most of the animal experimentation, cell, and molecular work including characterization and injection of P-MSCs. SJPS was also associated in preparation, characterization, and injection of P-MSCs into rats. SNS and SKM were involved in designing some experiments, configuration of figures, and preparation of the manuscript. RRB was involved in human placenta collection, human ethical approval, as well as isolation of P-MSCs. VV coordinated the overall team, including project design and manuscript preparation.

Corresponding author

Correspondence to Vijayalakshmi Venkatesan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with this article.

Ethics statement

The authors confirm that the journal's ethical policies, as noted on the journal's author guidelines page, have been adhered to, and the appropriate ethical review committee approval has been received. Institutional Animal Ethics Committees (IAECs): P35F/IAEC/NIN/11/2012/VV/WNIN. Institutional Human Ethics Committees: MHB/SCR/021.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotikalapudi, N., Sampath, S.J.P., Sinha, S.N. et al. Human placental mesenchymal stromal cell therapy restores the cytokine efflux and insulin signaling in the skeletal muscle of obesity-induced type 2 diabetes rat model. Human Cell 35, 557–571 (2022). https://doi.org/10.1007/s13577-021-00664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00664-3

Keywords

Navigation