Skip to main content

Advertisement

Log in

microRNA-4270-5p inhibits cancer cell proliferation and metastasis in hepatocellular carcinoma by targeting SATB2

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) remains a lethal cancer type for both males and females. MicroRNAs (miRNAs) contribute to the initiation, development and metastasis of cancer. Although several miRNAs have been identified as drivers or suppressors of HCC, the molecular mechanisms of many miRNAs have not been investigated. Currently, we discovered that miR-4270-5p was a significantly downregulated miRNA in HCC. We revealed that miR-4270-5p overexpression inhibited cell proliferation and invasion of HCC cells. The data manifested that miR-4270-5p directly targeted SATB2, a key regulator of epithelial mesenchymal transition (EMT), in HCC cells and reversed the EMT process. The rescue experiments suggested that SATB2 overexpression reversed the biological function of miR-4270-5p in HCC cells. Clinical data indicated that SATB2 expression was negatively correlated with miR-4270-5p levels in HCC patients. Our findings provided potential targets for prognosis and treatment of patients with HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. Zahid KR, Han S, Zhou F, Raza U. Novel tumor suppressor SPRYD4 inhibits tumor progression in hepatocellular carcinoma by inducing apoptotic cell death. Cell Oncol (Dordr). 2019;42(1):55–66.

    Article  CAS  Google Scholar 

  3. Gomes MA, Priolli DG, Tralhao JG, Botelho MF. Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev Assoc Med Bras (1992). 2013;59(5):514–24.

    Article  Google Scholar 

  4. Campsen J, Zimmerman M, Trotter J, et al. Liver transplantation for hepatitis B liver disease and concomitant hepatocellular carcinoma in the United States With hepatitis B immunoglobulin and nucleoside/nucleotide analogues. Liver Transpl. 2013;19(9):1020–9.

    Article  Google Scholar 

  5. Kondo M, Moriishi K, Wada H, et al. Upregulation of nuclear PA28gamma expression in cirrhosis and hepatocellular carcinoma. Exp Ther Med. 2012;3(3):379–85.

    Article  Google Scholar 

  6. Zhang N, Chen X. A positive feedback loop involving the LINC00346/beta-catenin/MYC axis promotes hepatocellular carcinoma development. Cell Oncol (Dordr). 2020;43(1):137–53.

    Article  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  Google Scholar 

  8. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  Google Scholar 

  9. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25(17):2537–45.

    Article  CAS  Google Scholar 

  10. Huang DH, Wang GY, Zhang JW, Li Y, Zeng XC, Jiang N. MiR-501-5p regulates CYLD expression and promotes cell proliferation in human hepatocellular carcinoma. Jpn J Clin Oncol. 2015;45(8):738–44.

    Article  Google Scholar 

  11. Jiang C, Yu M, Xie X, et al. miR-217 targeting DKK1 promotes cancer stem cell properties via activation of the Wnt signaling pathway in hepatocellular carcinoma. Oncol Rep. 2017;38(4):2351–9.

    Article  CAS  Google Scholar 

  12. Kim J, Jiang J, Badawi M, Schmittgen TD. miR-221 regulates CD44 in hepatocellular carcinoma through the PI3K-AKT-mTOR pathway. Biochem Biophys Res Commun. 2017;487(3):709–15.

    Article  CAS  Google Scholar 

  13. Hua S, Liu C, Liu L, Wu D. miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res Commun. 2018;496(3):947–54.

    Article  CAS  Google Scholar 

  14. Wei R, Huang GL, Zhang MY, et al. Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. Clin Cancer Res. 2013;19(17):4780–91.

    Article  CAS  Google Scholar 

  15. Aprelikova O, Yu X, Palla J, et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 2010;9(21):4387–98.

    Article  CAS  Google Scholar 

  16. Luo LJ, Yang F, Ding JJ, et al. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene. 2016;594(1):47–58.

    Article  CAS  Google Scholar 

  17. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int. 2009;9:18.

    Article  Google Scholar 

  18. Gu J, Wang G, Liu H, Xiong C. SATB2 targeted by methylated miR-34c-5p suppresses proliferation and metastasis attenuating the epithelial-mesenchymal transition in colorectal cancer. Cell Prolif. 2018;51(4):e12455.

    Article  Google Scholar 

  19. Gan X, Jiang J, Wu G, Chen D, Liao D, Li M. SATB2 induces stem-like properties and promotes epithelial–mesenchymal transition in hepatocellular carcinoma. Int J Clin Exp Pathol. 2017;10(12):11932–40.

    PubMed  PubMed Central  Google Scholar 

  20. Abdel-Rahman O. Assessment of the discriminating value of the 8th AJCC stage grouping for hepatocellular carcinoma. HPB (Oxford). 2018;20(1):41–8.

    Article  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  22. Zhu HR, Huang RZ, Yu XN, et al. Microarray expression profiling of microRNAs reveals potential biomarkers for hepatocellular carcinoma. Tohoku J Exp Med. 2018;245(2):89–988.

    Article  CAS  Google Scholar 

  23. Karaosmanoglu O, Banerjee S, Sivas H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol (Dordr). 2018;41(4):439–53.

    Article  CAS  Google Scholar 

  24. Sun G, Ding X, Bi N, et al. Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma. PLoS Genet. 2019;15(2):e1007888.

    Article  CAS  Google Scholar 

  25. Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49(5):1571–82.

    Article  CAS  Google Scholar 

  26. Zou A, Liu X, Mai Z, et al. LINC00472 acts as a tumor suppressor in NSCLC through KLLN-mediated p53-signaling pathway via microRNA-149-3p and microRNA-4270. Mol Ther Nucleic Acids. 2019;17:563–77.

    Article  CAS  Google Scholar 

  27. Hu X, Zhai Y, Kong P, et al. FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett. 2017;397:83–93.

    Article  CAS  Google Scholar 

  28. Jaca A, Govender P, Locketz M, Naidoo R. The role of miRNA-21 and epithelial mesenchymal transition (EMT) process in colorectal cancer. J Clin Pathol. 2017;70(4):331–56.

    Article  CAS  Google Scholar 

  29. Zhu H, Zhou X, Ma C, et al. Low expression of miR-448 induces EMT and promotes invasion by regulating ROCK2 in hepatocellular carcinoma. Cell Physiol Biochem. 2015;36(2):487–98.

    Article  CAS  Google Scholar 

  30. Ma YN, Zhang HY, Fei LR, et al. SATB2 suppresses non-small cell lung cancer invasiveness by G9a. Clin Exp Med. 2018;18(1):37–44.

    Article  CAS  Google Scholar 

  31. Chen QY, Des Marais T, Costa M. Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis. 2019;40(3):393–402.

    Article  CAS  Google Scholar 

  32. Wei J, Shi Y, Zheng L, et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol. 2012;197(4):509–21.

    Article  CAS  Google Scholar 

  33. Jiang G, Cui Y, Yu X, Wu Z, Ding G, Cao L. miR-211 suppresses hepatocellular carcinoma by downregulating SATB2. Oncotarget. 2015;6(11):9457–66.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-chao Li.

Ethics declarations

Conflict of interest

All the authors declare that they have no competing interests of any type in the current study.

Ethical standards

The study was performed in accordance with the Declaration of Helsinki and obtained the approval from the Ethics Committee of the China-Japan Union Hospital of Jilin University.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Cf., Sun, Lb. et al. microRNA-4270-5p inhibits cancer cell proliferation and metastasis in hepatocellular carcinoma by targeting SATB2. Human Cell 33, 1155–1164 (2020). https://doi.org/10.1007/s13577-020-00384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00384-0

Keywords

Navigation