Skip to main content

Advertisement

Log in

Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Alveolar soft-part sarcoma is a mesenchymal malignancy characterized by the rearrangement of ASPSCR1 and TFE3 and a histologically distinctive pseudoalveolar pattern. Although alveolar soft-part sarcoma takes an indolent course, its long-term prognosis is poor because of late distant metastases. Currently, curative treatments have not been found for alveolar soft-part sarcoma, and hence, a novel therapeutic strategy has long been required. Patient-derived cell lines comprise an important tool for basic and preclinical research. However, few cell lines from alveolar soft-part sarcoma have been reported in the literature because it is an extremely rare malignancy, accounting for less than 1% of all soft-tissue sarcomas. This study aimed to establish a novel alveolar soft-part sarcoma cell line. Using surgically-resected tumor tissue of alveolar soft-part sarcoma, we successfully established a cell line and named it NCC-ASPS1-C1. The NCC-ASPS1-C1 cells harbored an ASPSCR1-TFE3 fusion gene and exhibited slow growth, and spheroid formation. On the other hand, NCC-ASPS1-C1 did not show the capability of invasion. We screened the antiproliferative effects of 195 anticancer agents, including Food and Drug Administration-approved anticancer drugs. We found that the MET inhibitor tivantinib and multi-kinase inhibitor orantinib inhibited the proliferation of NCC-ASPS1-C1 cells. The clinical utility and molecular mechanisms of antitumor effects of these drugs are worth investigating in the further studies, and NCC-ASPS1-C1 cells will be a useful tool for the in vitro study of alveolar soft-part sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ladanyi M, Lui MY, Antonescu CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20:48–57.

    Article  CAS  PubMed  Google Scholar 

  2. Joyama S, Ueda T, Shimizu K, et al. Chromosome rearrangement at 17q25 and xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer. 1999;86:1246–50.

    Article  CAS  PubMed  Google Scholar 

  3. Heimann P, Devalck C, Debusscher C, Sariban E, Vamos E. Alveolar soft-part sarcoma: further evidence by FISH for the involvement of chromosome band 17q25. Genes Chromosom Cancer. 1998;23:194–7.

    Article  CAS  PubMed  Google Scholar 

  4. Christopherson WM, Foote FW Jr, Stewart FW. Alveolar soft-part sarcomas; structurally characteristic tumors of uncertain histogenesis. Cancer. 1952;5:100–11.

    Article  CAS  PubMed  Google Scholar 

  5. Smetana HF, Scott WF Jr. Malignant tumors of nonchromaffin paraganglia. Mil Surg. 1951;109:330–49.

    CAS  PubMed  Google Scholar 

  6. Folpe AL, Deyrup AT. Alveolar soft-part sarcoma: a review and update. J Clin Pathol. 2006;59:1127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hashimoto H. Incidence of soft tissue sarcomas in adults. Curr Topics Pathol Ergebnisse der Pathologie. 1995;89:1–16.

    Article  CAS  Google Scholar 

  8. Lawrence W Jr, Donegan WL, Natarajan N, Mettlin C, Beart R, Winchester D. Adult soft tissue sarcomas. A pattern of care survey of the American College of Surgeons. Ann Surg. 1987;205:349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lieberman PH, Brennan MF, Kimmel M, Erlandson RA, Garin-Chesa P, Flehinger BY. Alveolar soft-part sarcoma. A clinico-pathologic study of half a century. Cancer. 1989;63:1–13.

    Article  CAS  PubMed  Google Scholar 

  10. Portera CA Jr, Ho V, Patel SR, et al. Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer. 2001;91:585–91.

    Article  PubMed  Google Scholar 

  11. Ogose A, Yazawa Y, Ueda T, et al. Alveolar soft part sarcoma in Japan: multi-institutional study of 57 patients from the Japanese Musculoskeletal Oncology Group. Oncology. 2003;65:7–13.

    Article  PubMed  Google Scholar 

  12. Reichardt P, Lindner T, Pink D, Thuss-Patience PC, Kretzschmar A, Dorken B. Chemotherapy in alveolar soft part sarcomas. What do we know? Eur J Cancer. 2003;39:1511–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lazar AJ, Das P, Tuvin D, et al. Angiogenesis-promoting gene patterns in alveolar soft part sarcoma. Clin Cancer Res. 2007;13:7314–21.

    Article  CAS  PubMed  Google Scholar 

  14. Tsuda M, Davis IJ, Argani P, et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res. 2007;67:919–29.

    Article  CAS  PubMed  Google Scholar 

  15. Stockwin LH, Vistica DT, Kenney S, et al. Gene expression profiling of alveolar soft-part sarcoma (ASPS). BMC Cancer. 2009;9:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lazar AJ, Lahat G, Myers SE, et al. Validation of potential therapeutic targets in alveolar soft part sarcoma: an immunohistochemical study utilizing tissue microarray. Histopathology. 2009;55:750–5.

    Article  PubMed  Google Scholar 

  17. Kummar S, Allen D, Monks A, et al. Cediranib for metastatic alveolar soft part sarcoma. J Clin Oncol. 2013;31:2296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Judson I, Morden JP, Kilburn L, et al. Cediranib in patients with alveolar soft-part sarcoma (CASPS): a double-blind, placebo-controlled, randomised, phase 2 trial. Lancet Oncol. 2019;20:1023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilky BA, Trucco MM, Subhawong TK, et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019;20:837–48.

    Article  CAS  PubMed  Google Scholar 

  20. Brodin BA, Wennerberg K, Lidbrink E, et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer. 2019;120:435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pulkka OP, Gebreyohannes YK, Wozniak A, et al. Anagrelide for gastrointestinal stromal tumor. Clin Cancer Res. 2019;25:1676–87.

    Article  CAS  PubMed  Google Scholar 

  22. Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 2015;5:1210–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haverty PM, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature. 2016;533:333–7.

    Article  CAS  PubMed  Google Scholar 

  26. Niepel M, Hafner M, Mills CE, et al. A multi-center study on the reproducibility of drug-response assays in mammalian cell lines. Cell systems. 2019;9(35–48):e5.

    Google Scholar 

  27. Kenney S, Vistica DT, Stockwin LH, et al. ASPS-1, a novel cell line manifesting key features of alveolar soft part sarcoma. J Pediatr Hematol Oncol. 2011;33:360–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamijyo A, Shinoda K. Establishment of human alveolar soft sarcoma cell line ASPS-KY. Nihon Seikeigeka Gakkai Zasshi. 2005;75:S598.

    Google Scholar 

  29. Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech: JBT. 2018;29:25–38.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vistica DT, Hollingshead M, Borgel SD, et al. Therapeutic vulnerability of an in vivo model of alveolar soft part sarcoma (ASPS) to antiangiogenic therapy. J Pediatr Hematol Oncol. 2009;31:561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conte N, Mason JC, Halmagyi C, et al. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 2019;47:D1073–D10791079.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-CDS2-C1: a novel patient-derived cell line of CIC-DUX4 sarcoma. Hum Cell. 2020;33:427–36.

    Article  PubMed  Google Scholar 

  33. Billiau A, Edy VG, Heremans H, et al. Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother. 1977;12:11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Voissiere A, Jouberton E, Maubert E, et al. Development and characterization of a human three-dimensional chondrosarcoma culture for in vitro drug testing. PLoS ONE. 2017;12:e0181340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Munshi N, Jeay S, Li Y, et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9:1544–53.

    Article  CAS  PubMed  Google Scholar 

  38. Davis IJ, Fisher DE. MiT transcription factor associated malignancies in man. Cell Cycle. 2007;6:1724–9.

    Article  CAS  PubMed  Google Scholar 

  39. Goldberg JM, Gavcovich T, Saigal G, Goldman JW, Rosen LS. Extended progression-free survival in two patients with alveolar soft part sarcoma exposed to tivantinib. J Clin Oncol. 2014;32:e114–e11616.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Calles A, Kwiatkowski N, Cammarata BK, Ercan D, Gray NS, Jänne PA. Tivantinib (ARQ 197) efficacy is independent of MET inhibition in non-small-cell lung cancer cell lines. Mol Oncol. 2015;9:260–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kuenzi BM, Remsing Rix LL, Kinose F, et al. Off-target based drug repurposing opportunities for tivantinib in acute myeloid leukemia. Sci Rep. 2019;9:606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000;60:4152–60.

    CAS  PubMed  Google Scholar 

  43. Solorzano CC, Jung YD, Bucana CD, et al. In vivo intracellular signaling as a marker of antiangiogenic activity. Cancer Res. 2001;61:7048–51.

    CAS  PubMed  Google Scholar 

  44. Kuenen BC, Giaccone G, Ruijter R, et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin Cancer Res. 2005;11:6240–6.

    Article  CAS  PubMed  Google Scholar 

  45. Stacchiotti S, Negri T, Zaffaroni N, et al. Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Ann Oncol. 2011;22:1682–90.

    Article  CAS  PubMed  Google Scholar 

  46. Li T, Wang L, Wang H, et al. A retrospective analysis of 14 consecutive Chinese patients with unresectable or metastatic alveolar soft part sarcoma treated with sunitinib. Invest New Drugs. 2016;34:701–6.

    Article  CAS  PubMed  Google Scholar 

  47. Jagodzinska-Mucha P, Switaj T, Kozak K, et al. Long-term results of therapy with sunitinib in metastatic alveolar soft part sarcoma. Tumori. 2017;103:231–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kim M, Kim TM, Keam B, et al. A phase II trial of pazopanib in patients with metastatic alveolar soft part sarcoma. Oncologist. 2019;24:20–e29.

    Article  CAS  PubMed  Google Scholar 

  49. Stacchiotti S, Mir O, Le Cesne A, et al. Activity of pazopanib and trabectedin in advanced alveolar soft part sarcoma. Oncologist. 2018;23:62–70.

    Article  CAS  PubMed  Google Scholar 

  50. Godl K, Gruss OJ, Eickhoff J, et al. Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res. 2005;65:6919–26.

    Article  CAS  PubMed  Google Scholar 

  51. Mukaihara K, Tanabe Y, Kubota D, et al. Cabozantinib and dastinib exert anti-tumor activity in alveolar soft part sarcoma. PLoS ONE. 2017;12:e0185321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nanni P, Landuzzi L, Manara MC, et al. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep. 2019;9:12174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Letai A. Functional precision cancer medicine-moving beyond pure genomics. Nat Med. 2017;23:1028–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. F Nakatani, E Kobayashi, S Iwata, M Nakagawa, T Komatsubara, M Saito, and C Sato (Division of Musculoskeletal Oncology, National Cancer Center Hospital), as well as Drs. T Shibayama and H Tanaka (Department of Diagnosis Pathology, National Cancer Center Hospital), for sampling tumor tissue specimens from surgically resected materials. We appreciate the technical assistance of Mr. T Ono and K Tanoue (Division of Rare Cancer Research, National Cancer Center Institute). We appreciate the technical support by Ms. Yurika Shiotani, Mr. Naoaki Uchiya, and Dr. Toshio Imai (Central Animal Division, National Cancer Center Research Institute). We would like to thank Editage (www.editage.jp) for English-language editing and for their constructive comments on the manuscript. This research was financially supported by the National Cancer Center Research and Development Fund (grant nos. 29-A-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Kondo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

The ethical committee of the National Cancer Center approved the use of clinical materials for this study with the approval number 2004-050.

Informed consent

Informed consent for the use of clinical samples for medical study and the publication of results was provided by the patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 kb)

Supplementary file2 (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimatsu, Y., Noguchi, R., Tsuchiya, R. et al. Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma. Human Cell 33, 1302–1310 (2020). https://doi.org/10.1007/s13577-020-00382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00382-2

Keywords

Navigation