Engel S. An investigation of the origin of the colostrum cells. J Anat. 1953;87(4):362–6.
CAS
PubMed
PubMed Central
Google Scholar
Victora CG, Bahl R, Barros AJ, Franca GV, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90. https://doi.org/10.1016/S0140-6736(15)01024-7.
Article
PubMed
Google Scholar
Henrick BM, Yao XD, Nasser L, Roozrogousheh A, Rosenthal KL. Breastfeeding behaviors and the innate immune system of human milk: working together to protect infants against inflammation, HIV-1, and other infections. Front Immunol. 2017;8:1631. https://doi.org/10.3389/fimmu.2017.01631.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cacho NT, Lawrence RM. Innate immunity and breast milk. Front Immunol. 2017;8:584. https://doi.org/10.3389/fimmu.2017.00584.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chirico G, Marzollo R, Cortinovis S, Fonte C, Gasparoni A. Antiinfective properties of human milk. J Nutr. 2008;138(9):1801S-6S.
Article
Google Scholar
Moodley-Govender E, Mulol H, Stauber J, Manary M, Coutsoudis A. Increased exclusivity of breastfeeding associated with reduced gut inflammation in infants. Breastfeed Med. 2015;10(10):488–92. https://doi.org/10.1089/bfm.2015.0110.
Article
PubMed
Google Scholar
Al-Shehri SS, Knox CL, Liley HG, Cowley DM, Wright JR, Henman MG, et al. Breastmilk-saliva interactions boost innate immunity by regulating the oral microbiome in early infancy. PLoS One. 2015;10(9):e0135047. https://doi.org/10.1371/journal.pone.0135047.
CAS
Article
PubMed
PubMed Central
Google Scholar
Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, et al. Leukocyte populations in human preterm and term breast milk identified by multicolour flow cytometry. PLoS One. 2015;10(8):e0135580. https://doi.org/10.1371/journal.pone.0135580.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, et al. Transfer of maternal immune cells by breastfeeding: maternal cytotoxic T lymphocytes present in breast milk localize in the Peyer’s patches of the nursed infant. PLoS One. 2016;11(6):e0156762. https://doi.org/10.1371/journal.pone.0156762.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou L, Yoshimura Y, Huang Y, Suzuki R, Yokoyama M, Okabe M, et al. Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunology. 2000;101(4):570–80.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bode L, McGuire M, Rodriguez JM, Geddes DT, Hassiotou F, Hartmann PE, et al. It’s alive: microbes and cells in human milk and their potential benefits to mother and infant. Adv Nutr. 2014;5(5):571–3.
Article
PubMed
PubMed Central
Google Scholar
Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017;22:11. https://doi.org/10.1186/s11658-017-0042-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hassiotou F, Hartmann PE. At the dawn of a new discovery: the potential of breast milk stem cells. Adv Nutr. 2014;5(6):770–8. https://doi.org/10.3945/an.114.006924.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hassiotou F, Hepworth AR, Metzger P, Tat Lai C, Trengove N, Hartmann PE, et al. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin Transl Immunol. 2013;2(4):e3. https://doi.org/10.1038/cti.2013.1.
CAS
Article
Google Scholar
Riskin A, Almog M, Peri R, Halasz K, Srugo I, Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr Res. 2012;71(2):220–5. https://doi.org/10.1038/pr.2011.34.
CAS
Article
PubMed
Google Scholar
Alexander KL, Targan SR, Elson CO. Microbiota activation and regulation of innate and adaptive immunity. Immunol Rev. 2014;260(1):206–20. https://doi.org/10.1111/imr.12180. rd. ;).
CAS
Article
PubMed
PubMed Central
Google Scholar
Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75(4):965–9. https://doi.org/10.1128/AEM.02063-08.
CAS
Article
PubMed
Google Scholar
Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS One. 2016;11(4):e0152751. https://doi.org/10.1371/journal.pone.0152751.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chassard C, de Wouters T, Lacroix C. Probiotics tailored to the infant: a window of opportunity. Curr Opin Biotechnol. 2014;26:141–7. https://doi.org/10.1016/j.copbio.2013.12.012.
CAS
Article
PubMed
Google Scholar
Langa S, Maldonado-Barragan A, Delgado S, Martin R, Martin V, Jimenez E, et al. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype. Appl Microbiol Biotechnol. 2012;94(5):1279–87. https://doi.org/10.1007/s00253-012-4032-1.
CAS
Article
PubMed
Google Scholar
Boix-Amoros A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016;7:492. https://doi.org/10.3389/fmicb.2016.00492.
Article
PubMed
PubMed Central
Google Scholar
McGuire MK, McGuire MA. Human milk: mother nature’s prototypical probiotic food? Adv Nutr. 2015;6(1):112–23. https://doi.org/10.3945/an.114.007435.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hock A, Miyake H, Li B, Lee C, Ermini L, Koike Y, et al. Breast milk-derived exosomes promote intestinal epithelial cell growth. J Pediatr Surg. 2017;52(5):755–9. https://doi.org/10.1016/j.jpedsurg.2017.01.032.
Article
PubMed
Google Scholar
Lanik WE, Xu L, Luke CJ, Hu EZ, Agrawal P, Liu VS, et al. Breast milk enhances growth of enteroids: an ex vivo model of cell proliferation. J Vis Exp. 2018. https://doi.org/10.3791/56921.
Article
PubMed
PubMed Central
Google Scholar
Merhav HJ, Wright HI, Mieles LA, Van Thiel DH. Treatment of IgA deficiency in liver transplant recipients with human breast milk. Transpl Int. 1995;8(4):327–9.
CAS
Article
PubMed
Google Scholar
Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 2007;329(1):129–36. https://doi.org/10.1007/s00441-007-0390-x.
Article
PubMed
Google Scholar
Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010;23(2):35–40. https://doi.org/10.1111/j.1749-0774.2010.00083.x.
CAS
Article
PubMed
Google Scholar
Thomas E, Zeps N, Cregan M, Hartmann P, Martin T. 14-3-3sigma (sigma) regulates proliferation and differentiation of multipotent p63-positive cells isolated from human breastmilk. Cell Cycle. 2011;10(2):278–84. https://doi.org/10.4161/cc.10.2.14470.
CAS
Article
PubMed
Google Scholar
Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30(10):2164–74. https://doi.org/10.1002/stem.1188.
Article
PubMed
PubMed Central
Google Scholar
Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29(2):171–82. https://doi.org/10.1177/0890334413477242.
Article
PubMed
Google Scholar
Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311(5769):1880–5. https://doi.org/10.1126/science.1110542.
CAS
Article
PubMed
Google Scholar
Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101. https://doi.org/10.1083/jcb.200611114.
CAS
Article
PubMed
PubMed Central
Google Scholar
Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802. https://doi.org/10.1038/nature09027.
CAS
Article
PubMed
Google Scholar
Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8. https://doi.org/10.1038/nature04372.
CAS
Article
PubMed
Google Scholar
Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010;6(6):568–77. https://doi.org/10.1016/j.stem.2010.03.020.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lloyd-Lewis B, Harris OB, Watson CJ, Davis FM. Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol. 2017;27(8):556–67. https://doi.org/10.1016/j.tcb.2017.04.001.
Article
PubMed
Google Scholar
Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev. 2014;28(11):1143–58. https://doi.org/10.1101/gad.242511.114.
CAS
Article
PubMed
PubMed Central
Google Scholar
Seldin L, Le Guelte A, Macara IG. Epithelial plasticity in the mammary gland. Curr Opin Cell Biol. 2017;49:59–63. https://doi.org/10.1016/j.ceb.2017.11.012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res. 2011;21(2):245–57. https://doi.org/10.1038/cr.2011.11.
Article
PubMed
PubMed Central
Google Scholar
Hassiotou F, Hepworth AR, Beltran AS, Mathews MM, Stuebe AM, Hartmann PE, et al. Expression of the pluripotency transcription factor OCT4 in the normal and aberrant mammary gland. Front Oncol. 2013;3:79. https://doi.org/10.3389/fonc.2013.00079.
Article
PubMed
PubMed Central
Google Scholar
Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK. Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One. 2010;5(12):e14421. https://doi.org/10.1371/journal.pone.0014421.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomas E, Lee-Pullen T, Rigby P, Hartmann P, Xu J, Zeps N. Receptor activator of NF-kappaB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells. 2012;30(6):1255–64. https://doi.org/10.1002/stem.1092.
CAS
Article
PubMed
Google Scholar
Thomas E, Zeps N, Rigby P, Hartmann P. Reactive oxygen species initiate luminal but not basal cell death in cultured human mammary alveolar structures: a potential regulator of involution. Cell Death Dis. 2011;2:e189. https://doi.org/10.1038/cddis.2011.69.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sani M, Hosseini SM, Salmannejad M, Aleahmad F, Ebrahimi S, Jahanshahi S, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int. 2015;39(5):611–8. https://doi.org/10.1002/cbin.10432.
CAS
Article
PubMed
Google Scholar
Hosseini SM, Talaei-Khozani T, Sani M, Owrangi B. Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int. 2014;2014:807896. https://doi.org/10.1155/2014/807896.
Article
PubMed
PubMed Central
Google Scholar
Twigger AJ, Hodgetts S, Filgueira L, Hartmann PE, Hassiotou F. From breast milk to brains: the potential of stem cells in human milk. J Hum Lact. 2013;29(2):136–9. https://doi.org/10.1177/0890334413475528.
Article
PubMed
Google Scholar
Li M, Belmonte JC. Ground rules of the pluripotency gene regulatory network. Nat Rev Genet. 2017;18(3):180–91. https://doi.org/10.1038/nrg.2016.156.
CAS
Article
PubMed
Google Scholar
Pipino C, Mandatori D, Buccella F, Lanuti P, Preziuso A, Castellani F, et al. Identification and characterization of a stem cell-like population in bovine milk: a potential new source for regenerative medicine in veterinary. Stem Cells Dev. 2018;27(22):1587–97. https://doi.org/10.1089/scd.2018.0114.
CAS
Article
PubMed
Google Scholar
Briere CE, Jensen T, McGrath JM, Young EE, Finck C. Stem-like cell characteristics from breast milk of mothers with preterm infants as compared to mothers with term infants. Breastfeed Med. 2017;12:174–9. https://doi.org/10.1089/bfm.2017.0002.
Article
PubMed
Google Scholar
Twigger AJ, Hepworth AR, Lai CT, Chetwynd E, Stuebe AM, Blancafort P, et al. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep. 2015;5:12933. https://doi.org/10.1038/srep12933.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes. Int J Mol Sci 2016. https://doi.org/10.3390/ijms17060956.
Article
PubMed
PubMed Central
Google Scholar
Keller T, Wengenroth L, Smorra D, Probst K, Kurian L, Kribs A, et al. Novel DRAQ5/SYTOX(R) blue based flow cytometric strategy to identify and characterize stem cells in human breast milk. Cytom B Clin Cytom. 2018. https://doi.org/10.1002/cyto.b.21748.
Article
Google Scholar
Briere CE, McGrath JM, Jensen T, Matson A, Finck C. Breast milk stem cells: current science and implications for preterm infants. Adv Neonatal Care. 2016;16(6):410–9. https://doi.org/10.1097/ANC.0000000000000338.
Article
PubMed
Google Scholar
Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D. Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechnology. 2013;65(3):385–93. https://doi.org/10.1007/s10616-012-9492-8.
CAS
Article
PubMed
Google Scholar
Barinaga M. Cells exchanged during pregnancy live on. Science. 2002;296(5576):2169–72. https://doi.org/10.1126/science.296.5576.2169.
CAS
Article
PubMed
Google Scholar
Dutta P, Burlingham WJ. Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism. 2010;1(1):2–10. https://doi.org/10.4161/chim.1.1.12667.
Article
PubMed
PubMed Central
Google Scholar
Piotrowski P, Croy BA. Maternal cells are widely distributed in murine fetuses in utero. Biol Reprod. 1996;54(5):1103–10.
CAS
Article
PubMed
Google Scholar
Philip PJ, Ayraud N, Masseyeff R. Transfer, tissue localization and proliferation of fetal cells in pregnant mice. Immunol Lett. 1982;4(3):175–8.
CAS
Article
PubMed
Google Scholar
Marleau AM, Greenwood JD, Wei Q, Singh B, Croy BA. Chimerism of murine fetal bone marrow by maternal cells occurs in late gestation and persists into adulthood. Lab Investig. 2003;83(5):673–81.
Article
PubMed
Google Scholar
Arvola M, Gustafsson E, Svensson L, Jansson L, Holmdahl R, Heyman B, et al. Immunoglobulin-secreting cells of maternal origin can be detected in B cell-deficient mice. Biol Reprod. 2000;63(6):1817–24.
CAS
Article
PubMed
Google Scholar
Hassiotou F, Heath B, Oz Ocal O, Filgueira L, Geddes D, Hartmann P, et al. Breastmilk stem cell transfer from mother to neonatal organs. FASEB J. 2014;28(No. 1_supplement):216
Google Scholar
Kinder JM, Stelzer IA, Arck PC, Way SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol. 2017;17(8):483–94. https://doi.org/10.1038/nri.2017.38.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ichinohe T. Long-term feto-maternal microchimerism revisited: microchimerism and tolerance in hematopoietic stem cell transplantation. Chimerism. 2010;1(1):39–43. https://doi.org/10.4161/chim.1.1.12743.
Article
PubMed
PubMed Central
Google Scholar
Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, et al. Cross-generational reproductive fitness enforced by microchimeric maternal cells. Cell. 2015;162(3):505–15. https://doi.org/10.1016/j.cell.2015.07.006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Abd Allah SH, Shalaby SM, El-Shal AS, El Nabtety SM, Khamis T, Abd El Rhman SA, et al. Breast milk MSCs: an explanation of tissue growth and maturation of offspring. IUBMB Life. 2016;68(12):935–42. https://doi.org/10.1002/iub.1573.
CAS
Article
PubMed
Google Scholar
Aydin MS, Yigit EN, Vatandaslar E, Erdogan E, Ozturk G. Transfer and integration of breast milk stem cells to the brain of suckling pups. Sci Rep. 2018;8(1):14289. https://doi.org/10.1038/s41598-018-32715-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Moles JP, Tuaillon E, Kankasa C, Bedin AS, Nagot N, Marchant A, et al. Breastfeeding-related maternal microchimerism. Nat Rev Immunol. 2017;17(11):729–1. https://doi.org/10.1038/nri.2017.115.
CAS
Article
PubMed
Google Scholar
Moles JP, Tuaillon E, Kankasa C, Bedin AS, Nagot N, Marchant A, et al. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr Allergy Immunol. 2018;29(2):133–43. https://doi.org/10.1111/pai.12841.
Article
PubMed
Google Scholar
Hanson LA. The mother-offspring dyad and the immune system. Acta Paediatr. 2000;89(3):252–8.
CAS
Article
PubMed
Google Scholar
Zhang L, van Bree S, van Rood JJ, Claas FH. Influence of breast feeding on the cytotoxic T cell allorepertoire in man. Transplantation. 1991;52(5):914–6.
CAS
Article
PubMed
Google Scholar
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev. 2017;13(6):741–56. https://doi.org/10.1007/s12015-017-9759-8.
CAS
Article
Google Scholar
Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017;158:94–131. https://doi.org/10.1016/j.pneurobio.2017.07.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS. Assessment of growth factors secreted by human breastmilk mesenchymal stem cells. Breastfeed Med. 2016;11(1):26–31. https://doi.org/10.1089/bfm.2015.0124.
Article
PubMed
Google Scholar
Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS. Breastmilk-derived mesenchymal stem cells in vitro are likely to be mediated through epithelial-mesenchymal transition. Breastfeed Med. 2016;11:152. https://doi.org/10.1089/bfm.2016.0023.
Article
PubMed
Google Scholar
Shindo A, Maki T, Mandeville ET, Liang AC, Egawa N, Itoh K, et al. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke. 2016;47(4):1094–100. https://doi.org/10.1161/STROKEAHA.115.012133.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dailey T, Metcalf C, Mosley YI, Sullivan R, Shinozuka K, Tajiri N, et al. An update on translating stem cell therapy for stroke from bench to bedside. J Clin Med. 2013;2(4):220–41. https://doi.org/10.3390/jcm2040220.
CAS
Article
PubMed
PubMed Central
Google Scholar
Biervliet FP, Maguiness SD, Hay DM, Killick SR, Atkin SL. Induction of lactation in the intended mother of a surrogate pregnancy: case report. Hum Reprod. 2001;16(3):581–3.
CAS
Article
PubMed
Google Scholar
Bryant CA. Nursing the adopted infant. J Am Board Fam Med. 2006;19(4):374–9.
Article
PubMed
Google Scholar
Reisman T, Goldstein Z. Case report: induced lactation in a transgender woman. Transgend Health. 2018;3(1):24–6. https://doi.org/10.1089/trgh.2017.0044.
Article
PubMed
PubMed Central
Google Scholar