Skip to main content
Log in

A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

The study proposes a new decision theoretic sampling plan (DSP) for Type-I and Type-I hybrid censored samples when the lifetimes of individual items are exponentially distributed with a scale parameter. The DSP is based on an estimator of the scale parameter which always exists, unlike the MLE which may not always exist. Using a quadratic loss function and a decision function based on the proposed estimator, a DSP is derived. To obtain the optimum DSP, a finite algorithm is used. Numerical results demonstrate that in terms of the Bayes risk, the optimum DSP is as good as the Bayesian sampling plan (BSP) proposed by Lin et al. (2002) and Liang and Yang (2013). The proposed DSP performs better than the sampling plan of Lam (1994) and Lin et al. (2008a) in terms of Bayes risks. The main advantage of the proposed DSP is that for higher degree polynomial and non-polynomial loss functions, it can be easily obtained as compared to the BSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Bartholomew, D. J. (1963). The sampling distribution of an estimate arising in life testing. Technometrics, 361–374.

    Article  MathSciNet  Google Scholar 

  • Hald, A. (1967). Asymptotic properties of Bayesian single sampling plans. Journal of the Royal Statistical Society, Ser. B29, 162–173.

    MathSciNet  MATH  Google Scholar 

  • Fertig, K. W. and Mann, N. R. (1974). A decision-theoretic approach to defining variables sampling plans for finite lots: single sampling for Exponential and Gaussian processes. J. Am. Stat. Assoc.69, 665–671.

    Article  MathSciNet  Google Scholar 

  • Herstein, I.N. (1975). Topics in Algebra. Wiley, New York.

    MATH  Google Scholar 

  • Lam, Y. (1988). Bayesian approach to single variable sampling plans. Biometrika 387–391.

  • Lam, Y. (1990). An optimal single variable sampling plan with censoring. The Statistician 53–66.

  • Lam, Y. (1994). Bayesian variable sampling plans for the exponential distribution with Type-I censoring. The Annals of Statistics 696–711.

  • Lam, Y. and Choy, S. (1995). Bayesian variable sampling plans for the exponential distribution with uniformly distributed random censoring. Journal of Statistical Planning and Inference, 277–293.

  • Lin, Y., Liang, T. and Huang, W. (2002). Bayesian sampling plans for exponential distribution based on type-I censoring data. Annals of the Institute of Statistical Mathematics, 100–113.

  • Huang, W. T. and Lin, Y. P. (2002). An improved Bayesian sampling plan for exponential population with type I censoring. Communications in Statistics: Theory and Methods31, 2003–2025.

    Article  MathSciNet  Google Scholar 

  • Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 319–330.

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Chou, W., Wu, H. and Zhou, H. (2004). Designing acceptance sampling schemes for life testing with mixed censoring. Naval Research Logistics51, 597–612.

    Article  MathSciNet  Google Scholar 

  • Huang, W. T. and Lin, Y.P. (2004). Bayesian sampling plans for exponential distribution based on uniform random censored data. Computational Statistics and Data Analysis44, 669–691.

    Article  MathSciNet  Google Scholar 

  • Lin, C., Huang, Y. and Balakrishnan, N. (2008a). Exact Bayesian variable sampling plans for the exponential distribution based on Type-I and Type-II hybrid censored samples. Communications in Statistics Simulation and Computation, 1101–1116.

    Article  MathSciNet  Google Scholar 

  • Lin, C., Huang, Y. and Balakrishnan, N. (2008b). Exact Bayesian variable sampling plans for the exponential distribution under type-I censoring. In Huber, C., Milnios, N., Mesbah, M. and Nikulin, M. (eds)Mathematical Methods for Survival Analysis, Reliability and Quality of Life. Hermes, London, pp. 151–162.

  • Lin, C., Huang, Y. and Balakrishnan, N. (2010). Corrections on Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II hybrid censored samples. Communications in Statistics: Simulation and Computation39, 1499–1505.

    Article  MathSciNet  Google Scholar 

  • Liang, T. and Yang, M.C. (2013). Optimal Bayesian sampling plans for exponential distributions based on hybrid censored samples. Journal of Statistical Computation and Simulation, 922–940.

    Article  MathSciNet  Google Scholar 

  • Tsai, T. R., Chiang, J. Y., Liang, T. and Yang, M. C. (2014). Efficient Bayesian sampling plans for exponential distributions with type-I censored samples. Journal of Statistical Computation and Simulation84, 964–981.

    Article  MathSciNet  Google Scholar 

  • Liang, T., Yang, M.C. and Chen, L. S. (2015). Optimal Bayesian variable sampling plans for exponential distributions based on modified type-II hybrid censored samples. Communications in Statistics-Simulation and Computation 1–23.

Download references

Acknowledgments

The authors would like to thank two unknown reviewers and the Associate Editor for their constructive comments which have helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu.

Appendix

Appendix

1.1 A Proof of Theorem 3.1

Proof.

The Bayes risk of DSP with respect to the loss function (3.1) is given by

$$\begin{array}{@{}rcl@{}} r(n, \tau, \zeta) & = & n(C_s-r_s)+ E(M)r_{s} + \tau C_{\tau} + a_0 + a_1 \mu_1 + a_2 \mu_2 \\ & &+ {\int}_{0}^{\infty}(C_r - a_0 - a_1 \lambda-a_2 \lambda ^2)P(\widehat{\lambda} \geq \zeta)\frac{b^a}{{\Gamma} (a)} \lambda^{a-1}e^{-\lambda b} d\lambda \\ & = & n(C_{s}-r_{s}) + E(M)r_{s} + \tau C_{\tau}+a_0 +a_1 \mu_1 +a_2 \mu_2 \\ & & + \sum\limits_{l = 0}^{2}C_{l}\frac{b^a}{{\Gamma} (a)}{\int}_{0}^{\infty} \lambda^{a+l-1} e^{-\lambda b}P(\widehat{\lambda} \geq \zeta)\ d\lambda, \end{array} $$
(7.1)

where Cl is defined as

$$ C_{l} = \left\{\begin{array}{lllll} C_{r}- a_{l} &\text{if} \quad l = 0,\\ -a_{l} &\text{if} \quad l = 1,2. \end{array}\right. $$
(7.2)

Using Lemma 3.1 in Eq. 7.1 we get

$$\begin{array}{@{}rcl@{}} & & {\int}_{0}^{\infty}\lambda^{a+l-1}e^{-\lambda b}P(\widehat{\lambda} \geq \zeta)\ d\lambda \\ &=& {\int}_{0}^{\infty}\lambda^{a+l-1}e^{-\lambda (b+n\tau)}\ d\lambda \ \textit{I}_{(\zeta= 0)} +\sum\limits_{m = 1}^{n}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^j \\ && \times {\int}_{0}^{\infty} {\int}_{\zeta}^{\frac{1}{\tau_{j,m}}}\lambda^{a+l+m-1}\frac{e^{-\lambda\{b+\frac{m}{y} \}}}{y^2}\big(\frac{1}{y}-\tau_{j,m}\big)^{m-1}dy \ d\lambda \\ &=& \frac{{\Gamma}{(a+l)}}{(b+n\tau)^{(a+l)}} \textit{I}_{(\zeta= 0)} + \sum\limits_{m = 1}^{n}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^j\frac{(m)^m}{{\Gamma} (m)}\\ &&\times{\int}_{\zeta}^{\frac{1}{\tau_{j,m}}}\frac{\big(\frac{1}{y}-\tau_{j,m}\big)^{m-1}{\Gamma}{(a+l+m)}}{y^2\{b+\frac{m}{y}\}^{a+l+m}}dy \\ & & = \frac{{\Gamma}{(a+l)}}{(b+n\tau)^{(a+l)}} \textit{I}_{(\zeta= 0)} + \sum\limits_{m = 1}^{n}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}\frac{(m)^m (-1)^j}{{\Gamma} (m)}\\ &&\times{\int}_{0}^{\frac{1}{\zeta}-\tau_{j,m}}\frac{v^{m-1}{\Gamma}{(a+l+m)}}{\{b+m\tau_{j,m}+mv\}^{a+l+m}}dv. \ \ \ \ \ \ \end{array} $$
(7.3)

Using Cj,m = b + mτj,m in Eq. 7.3, we can write

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{m = 1}^{n}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^{j}\frac{(m)^{m}}{{\Gamma} (m)}\frac{{\Gamma}{(a+l+m)}}{C_{j,m}^{a+l+m}}\\ &&\times{\int}_{0}^{\frac{1}{\zeta}- \tau_{j,m}}\frac{v^{m-1}}{\Big(1+\frac{mv}{C_{j,m}}\Big)^{a+l+m}}dv \\ &=&\sum\limits_{m = 1}^{n}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^{j}\frac{{\Gamma}{(a+l)}}{(C_{j,m})^{a+l}}\frac{{\Gamma}{(a+l+m)}}{{\Gamma} (m){\Gamma}{(a+l)}}\\ &&\times{\int}_{0}^{\frac{m(\frac{1}{\zeta}- \tau_{j,m})}{C_{j,m}}}\frac{z^{m-1}}{(1+z)^{a+l+m}}dz. \end{array} $$
(7.4)

Now taking a transformation z = u/(1 − u), we have

$$\begin{array}{*{20}l} {\int}_{0}^{C^{*}_{j,m}}\frac{z^{m-1}}{(1+z)^{a+l+m}}dz={\int}_{0}^{S^{*}_{j,m}}u^{m-1}(1-u)^{a+l-1}du=B_{S^{*}_{j,m}}(m,a+l), \end{array} $$

where \(\displaystyle C^{*}_{j,m}=\frac {m(\frac {1}{\zeta }- \tau _{j,m})}{C_{j,m}}\), \(\displaystyle S^{*}_{j,m}=\frac {C^{*}_{j,m}}{1+C^{*}_{j,m}}\), and

$$ B_{x}(\alpha,\beta)={{\int}_{0}^{x}}u^{\alpha -1}(1-u)^{\beta-1}du, \ \ \ \ \ 0\leq x \leq 1, $$

is the incomplete beta function. If the cumulative distribution function of the beta distribution is given by Ix(α, β) = Bx(α, β)/B(α, β), then using Eq. 7.4 the Bayes risk is finally obtained as

$$\begin{array}{@{}rcl@{}} r(n,\tau,\zeta) \!\!&=&\!\! n(C_{s}-r_{s}) + E(M)r_{s} +\tau C_{\tau}+a_{0} +a_{1} \mu_{1} +a_{2} \mu_{2} \\ && + \sum\limits_{l = 0}^{2} C_{l}\frac{b^{a}}{{\Gamma} (a)}\bigg[\frac{{\Gamma}{(a+l)}}{(b+n\tau)^{(a+l)}} \textit{I}_{(\zeta= 0)}\\ &&+\sum\limits_{m = 1}^{n}\sum\limits_{j = 0}^{m} (-1)^{j}\binom{n}{m}\binom{m}{j} \frac{{\Gamma}{(a+l)}}{(C_{j,m})^{a+l}}I_{S^{*}_{j,m}}(m,a+l)\bigg], \end{array} $$
(7.5)

where \( E(M) = {\sum }_{m = 1}^{n}{\sum }_{j = 0}^{m}m\binom {n}{m}\binom {m}{j}(-1)^{j}\frac {b^{a}}{(b+(n-m+j)\tau )^{a}} \). □

In general, for higher degree polynomial i.e for k > 2, the Bayes risk can be evaluated in a similar way for Type-I censoring.

1.2 B Proof of Theorem 3.2

Proof.

Note that the Bayes risk can be written as

$$\begin{array}{*{20}l} \begin{array}{lllll} r(n, \tau, \zeta) &=& n(C_{s}-r_{s}) + \tau C_{\tau} + E(M)r_{s}\\&&+ E_{\lambda}\big\{(a_{0} +a_{1}\lambda+ {\ldots} +a_{k} \lambda^{k})P(\widehat{\lambda}< \zeta) + C_{r} P(\widehat{\lambda} \geq \zeta)\big\}. \end{array} \end{array} $$

Now we know that a0 + a1λ + … + akλk ≥ 0 and Cr, the rejection cost, is non negative. Since (n0, τ0, ζ0) is the optimal sampling plan so the corresponding Bayes risk is

$$\begin{array}{*{20}l} r(n_{0}, \tau_{0}, \zeta_{0}) \geq n_{0} (C_{s}-r_{s}) + \tau_{0} C_{\tau}. \end{array} $$
(7.6)

Now when ζ = 0 we reject the batch without sampling and the corresponding Bayes risk is given by r(0, 0, 0) = Cr. When ζ = we accept the batch without sampling and corresponding Bayes risk is given by r(0, 0, ) = a0 + a1μ1 + … + akμk. Then the optimal Bayes risk is

$$\begin{array}{*{20}l} r(n_{0}, \tau_{0}, \zeta_{0}) \leq min \big\{ r(0,0,0),r(0,0,\infty),r(n, \tau, \zeta^{\prime})\big\}. \end{array} $$
(7.7)

Hence from Eqs. 7.6 and 7.7 we have

$$\begin{array}{*{20}l} n_{0}(C_{s}-r_{s}) + \tau_{0} C_{\tau} \leq min \big\{ r(0,0,0),r(0,0,\infty),r(n, \tau, \zeta^{\prime})\big\}. \end{array} $$

from where it follows that

$$\begin{array}{*{20}l} &n_{0} \leq min \bigg\{ \frac{C_{r}}{C_{s}-r_{s}},\frac{a_{0} + a_{1}\mu_{1} + {\ldots} + a_{k} \mu_{k}}{C_{s}-r_{s}},\frac{r(n, \tau, \zeta^{\prime})}{C_{s}-r_{s}}\bigg\} \\ &\tau_{0} \leq min \bigg\{ \frac{C_{r}}{C_{\tau}},\frac{a_{0} + a_{1}\mu_{1} + {\ldots} + a_{k} \mu_{k}}{C_{\tau}},\frac{r(n, \tau, \zeta^{\prime})}{C_{\tau}}\bigg\}. \end{array} $$

1.3 C Proof of Theorem 4.1

Proof.

The Bayes risk of DSP with respect to the loss function (4.1) is given by

$$\begin{array}{@{}rcl@{}} r(n, r,\tau, \zeta) & = & n(C_s-r_{s}) + E(M)r_{s} + E(\tau^{*}) C_{\tau} + a_0 + a_1 \mu_1 + a_2 \mu_2 \\ & & + {\int}_{0}^{\infty}(C_r - a_0 - a_1 \lambda-a_2 \lambda ^2)P(\widehat{\lambda} \geq \zeta)\frac{b^a}{{\Gamma} (a)} \lambda^{a-1}e^{-\lambda b} d\lambda \\ & = & n(C_{s}-r_{s}) + E(M)r_{s} + E(\tau^{*}) C_{\tau}+a_0 +a_1 \mu_1 +a_2 \mu_2 \\ & & + {\sum}_{l = 0}^{2}C_{l}\frac{b^a}{{\Gamma} (a)}{\int}_{0}^{\infty} \lambda^{a+l-1} e^{-\lambda b}P(\widehat{\lambda} \geq \zeta)\ d\lambda \end{array} $$
(7.8)

where Cl is defined as earlier. Let \(\zeta ^{*}=max\{\frac {1}{n\tau },\zeta \}\), where ζ > 0 and

$$\begin{array}{@{}rcl@{}} R_{l,j,m} & = & {\int}_{0}^{\infty}{\int}_{\zeta^{*}}^{\infty}\lambda^{a+l-1}\frac{e^{-\lambda \{b+\tau(n-m+j)\}}}{y^2}\pi \Big(\frac{1}{y}-\tau_{j,m}; m, m\lambda \Big)dy \ d\lambda \\ & = & \frac{(m)^m}{{\Gamma}(m)}{\int}_{0}^{\infty}{\int}_{\zeta^{*}}^{\frac{1}{\tau_{j,m}}}\lambda^{a+l+m-1}\frac{e^{-\lambda\{b+\frac{m}{y} \}}}{y^2}\big(\frac{1}{y}-\tau_{j,m}\big)^{m-1}dy \ d\lambda \\ & = & \frac{(m)^m}{{\Gamma}(m)}{\int}_{\zeta^{*}}^{\frac{1}{\tau_{j,m}}}\frac{\big(\frac{1}{y}-\tau_{j,m}\big)^{m-1}{\Gamma}{(a+l+m)}}{y^2\{b+\frac{m}{y}\}^{a+l+m}}dy \\ & = & \frac{(m)^m}{{\Gamma}(m)}{\int}_{0}^{\frac{1}{\zeta^{*}}-\tau_{j,m}}\frac{v^{m-1}{\Gamma}{(a+l+m)}}{\{b+m\tau_{j,m}+mv\}^{a+l+m}}dv \\ & = &\frac{(m)^m}{{\Gamma}(m)}\frac{{\Gamma}{(a+l+m)}}{C_{j,m}^{a+l+m}}{\int}_{0}^{\frac{1}{\zeta^{*}}- \tau_{j,m}}\frac{v^{m-1}}{\Big(1+\frac{mv}{C_{j,m}}\Big)^{a+l+m}}dv \\ & = & \frac{{\Gamma}{(a+l)}}{(C_{j,m})^{a+l}}\frac{{\Gamma}{(a+l+m)}}{{\Gamma} (m){\Gamma}{(a+l)}}{\int}_{0}^{\frac{m(\frac{1}{\zeta^{*}}- \tau_{j,m})}{C_{j,m}}}\frac{z^{m-1}}{(1+z)^{a+l+m}}dz, \end{array} $$

where Cj, m = b + mτj, m. Now taking a transformation z = u/(1 − u), we have

$$\begin{array}{*{20}l} {\int}_{0}^{C^{*}_{j,m}}\frac{z^{m-1}}{(1+z)^{a+l+m}}dz={\int}_{0}^{S^{*}_{j,m}}u^{m-1}(1-u)^{a+l-1}du=B_{S^{*}_{j,m}}(m,a+l), \end{array} $$

where \(\displaystyle C^{*}_{j,m}=\frac {m(\frac {1}{\zeta ^{*}}- \tau _{j,m})}{C_{j,m}}\) and \(\displaystyle S^{*}_{j,m}=\frac {C^{*}_{j,m}}{1+C^{*}_{j,m}}\). Using Bx(α, β) and Ix(α, β) defined earlier, we obtain the expression

$$\begin{array}{@{}rcl@{}} R_{l,j,m}= \frac{{\Gamma}{(a+l)}}{(C_{j,m})^{a+l}} I_{S^*_{j,m}}(m,a+l). \end{array} $$
(7.9)

Using Lemma 4.1 in Eq. 7.8 and by Eq. 7.9 we get

$$\begin{array}{@{}rcl@{}} & & {\int}_{0}^{\infty}\lambda^{a+l-1}e^{-\lambda b}P(\widehat{\lambda} \geq \zeta)\ d\lambda \\ & =& {\int}_{0}^{\infty}\lambda^{a+l-1}e^{-\lambda (b+n\tau)}\ d\lambda \ \textit{I}_{(\zeta= 0)} +\sum\limits_{m = 1}^{r-1}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^j \\ && \times {\int}_{0}^{\infty}{\int}_{\zeta^{*}}^{\infty}\lambda^{a+l-1}\frac{e^{-\lambda \{b+\tau(n-m+j)\}}}{y^2} \pi \Big(\frac{1}{y}-\tau_{j,m}; m, m\lambda \Big)dy \ d\lambda \\ & & + {\int}_{0}^{\infty}{\int}_{\zeta^{*}}^{\infty}\lambda^{a+l-1}\frac{e^{-\lambda b}}{y^2} \pi \Big(\frac{1}{y}; r, r\lambda \Big)dy \ d\lambda + \sum\limits_{k = 1}^{r}\binom{n}{r}\binom{r-1}{k-1}\\ &&\times(-1)^k \frac{r}{(n-r+k)} \\ & & \times{\int}_{0}^{\infty}{\int}_{\zeta^{*}}^{\infty}\lambda^{a+l-1}\frac{e^{-\lambda \{b+\tau(n-r+k)\}}}{y^2} \pi \Big(\frac{1}{y}-\tau_{k,r}; r, r\lambda \Big)dy \ d\lambda \\ & =& \frac{{\Gamma}{(a+l)}}{(b+n\tau)^{(a+l)}} \textit{I}_{(\zeta= 0)}+\sum\limits_{m = 1}^{r-1}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^j R_{l,j,m} +R_{l,r-n,r} \\ & & +\sum\limits_{k = 1}^{r}\binom{n}{r}\binom{r-1}{k-1}(-1)^k \frac{r}{(n-r+k)} R_{l,k,r}. \end{array} $$

Thus Bayes risk of DSP under Type-I hybrid censoring is given by

$$\begin{array}{@{}rcl@{}} r(n, r,\tau, \zeta) & = & n(C_{s}-r_{s}) + E(M)r_{s} + E(\tau^{*}) C_{\tau}+a_0 +a_1 \mu_1 +a_2 \mu_2 \\ & & + \sum\limits_{l = 0}^{2}C_{l}\frac{b^a}{{\Gamma} (a)}\bigg\{\frac{{\Gamma}{(a+l)}}{(b+n\tau)^{(a+l)}} \textit{I}_{(\zeta= 0)}\\ &&+\sum\limits_{m = 1}^{r-1}\sum\limits_{j = 0}^{m}\binom{n}{m}\binom{m}{j}(-1)^j R_{l,j,m} +R_{l,r-n,r} \\ & & +\sum\limits_{k = 1}^{r}\binom{n}{r}\binom{r-1}{k-1}(-1)^k \frac{r}{(n-r+k)} R_{l,k,r}\bigg\}, \end{array} $$
(7.10)

where

$$\begin{array}{@{}rcl@{}} E(M)& = &\sum\limits_{m = 1}^{r-1}\sum\limits_{j = 0}^{m}m\binom{n}{m}\binom{m}{j}(-1)^{j}\frac{b^a}{(b+(n-m+j)\tau)^a} \\ & & \hspace{2.5cm}+\sum\limits_{k=r}^{n}\sum\limits_{j = 0}^{k}r\binom{n}{k}\binom{k}{j}(-1)^j\frac{b^a}{(b+(n-k+j)\tau)^a} \\ E(\tau^{*})& = & r\binom{n}{r}\sum\limits_{j = 0}^{r-1}\binom{r-1}{j}(-1)^{r-1-j}\\ &&\times\bigg\{\frac{b}{(n-j)^2(a-1)}- \frac{tb^a}{(n-j)((n-j)\tau+b)^a} \\ & & -\frac{b^a}{(n-j)^2(a-1)((n-j)\tau+b)^{a-1}}\bigg\} \\ &&+ \sum\limits_{k=r}^{n}{\sum}_{j = 0}^{k}\tau\binom{n}{k}\binom{k}{j}(-1)^j\frac{b^a}{(b+(n-k+j)\tau)^a}. \end{array} $$

For computation of E(M) and E(τ) see Liang and Yang (2013). □

In general, for higher degree polynomial, i.e., for k > 2, the Bayes risk can be evaluated in a similar way for Type-I hybrid censoring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, D., Mitra, S. & Kundu, D. A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution. Sankhya B 81, 251–288 (2019). https://doi.org/10.1007/s13571-018-0167-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-018-0167-0

Keywords

AMS (2000) subject classification

Navigation