Skip to main content

Advertisement

Log in

Semiparametric estimation of quality adjusted lifetime distribution in semi-Markov illness–death model

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

In this work, we consider semiparametric estimation of quality adjusted lifetime (QAL) distribution using Cox proportional hazards model for the sojourn time in each health state. The regression coefficients are estimated by maximizing the corresponding partial likelihood and the baseline cumulative hazards are estimated by using the method of Breslow (Biometrics 30:89–99, 1974). The estimate of QAL distribution is obtained by using these estimates in the theoretical expression of QAL distribution. The asymptotic normality of the proposed estimator is established. The performance of the proposed estimator is studied using Monte Carlo simulation. A real data example of the Stanford Heart Transplant Program is used to illustrate the proposed method. Extension to a general model is also discussed and illustrated with an analysis of International Breast Cancer Study Group (IBCSG) Trial V data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen, P.K., O. Borgan, R.D. Gill, and N. Keiding. 1993. Statistical models based on counting processes. New York: Springer.

    MATH  Google Scholar 

  • Breslow, N.E. 1974. Covariance analysis of censored survival data. Biometrics 30:89–99.

    Article  Google Scholar 

  • Cole, B.F., R.D. Gelber, and A. Goldhirsch. 1993. Cox regression models for quality adjusted survival analysis. Statistics in Medicine 12:975–987.

    Article  Google Scholar 

  • Cox, D.R. 1972. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society Series B 34:187–220.

    MATH  Google Scholar 

  • Crowley, J., and M. Hu. 1977. Covariance analysis of heart transplant survival data. Journal of the American Statistical Association 72:27–36.

    Article  Google Scholar 

  • Goldhirsch, A., R.D. Gelber, R.J. Simes, P. Glasziou, and A. Coates For the Ludwig Breast Cancer Study Group. 1989. Costs and benefits of adjuvant therapy in breast cancer: A quality adjusted survival analysis. Journal of Clinical Oncology 7:36–44.

    Google Scholar 

  • Huang, Y., and T.A. Louis. 1998. Nonparametric estimation of the joint distribution of survival time and mark variables. Biometrika 85:785–798.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, Y., and T.A. Louis. 1999. Expressing estimators of expected quality adjusted survival as functions of Nelson–Aalen estimators. Lifetime Data Analysis 5:199–212.

    Article  MathSciNet  Google Scholar 

  • Hwang, J.S., J.Y. Tsauo, and J.D. Wang. 1996. Estimation of expected quality-adjusted survival by cross-sectional survey. Statistics in Medicine 15:93–102.

    Article  Google Scholar 

  • Korn, E.L. 1993. On estimating the distribution function for quality of life in cancer clinical trials. Biometrika 80:535–542.

    Article  MathSciNet  MATH  Google Scholar 

  • Pradhan, B., and A. Dewanji. 2009a. Parametric estimation of quality adjusted lifetime (QAL) distribution in progressive illness–death model. Statistics in Medicine 28:2012–2027.

    Article  MathSciNet  Google Scholar 

  • Pradhan, B., and A. Dewanji 2009b. Parametric estimation of quality adjusted lifetime (QAL) distribution for two general illness–death models. Calcutta Statistical Association Bulletin 61:33–59.

    MathSciNet  Google Scholar 

  • Pradhan, B., and A. Dewanji 2010. Nonparametric estimator for the survival function of quality adjusted lifetime (QAL) in a three-state illness–death model. Journal of the Korean Statistical Society 39:315–324.

    Article  MathSciNet  Google Scholar 

  • Pradhan, B., A. Dewanji, and D. Sengupta. 2010. Parametric estimation of quality adjusted lifetime (QAL) distribution in simple illness–death model. Communications in Statistics: Theory and Methods 39:77–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Shu, Y., J.P. Klein, and M.-J. Zhang. 2007. Asymptotic theory for the Cox semi-Markov illness–death model. Lifetime Data Analysis 13:91–117.

    Article  MathSciNet  MATH  Google Scholar 

  • Tunes-da-Silva, G., A.C. Pedroso-de-Lima, and P.K. Sen. 2009. A semi-Markov multistate model for estimation of the mean quality-adjusted survival for non-progressive processes. Lifetime Data Analysis 15:216–240.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Laan, M.J., and A. Hubbard. 1999. Locally efficient estimation of the quality-adjusted lifetime distribution with right-censored data and covariates. Biometrics 55:530–536.

    Article  MathSciNet  MATH  Google Scholar 

  • Voelkel,, J.G., and J. Crowley. 1984. Nonparametric inference for a class of semi-Markov processes with censored observations. Annals of Statistics 12:142–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., and H. Zhao. 2007. Regression analysis of mean quality-adjusted lifetime with censored data. Biostatistics 8:368–382.

    Article  MATH  Google Scholar 

  • Zhao,, H., and A.A. Tsiatis. 1997. A consistent estimator for the distribution of quality adjusted survival time. Biometrika 84:339–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, H., and A.A. Tsiatis. 1999. Efficient estimation of the distribution of quality adjusted survival time. Biometrics 55:1101–1107.

    Article  MATH  Google Scholar 

  • Zhao, H., and A.A. Tsiatis. 2000. Estimating mean quality adjusted lifetime with censored data. Sankhyā, Series B: Special Issue on Biostatistics 62:175–188.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the International Breast Cancer Study Group for providing the data used in Section 6. The authors would also like to thank an anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswabrata Pradhan.

Appendix

Appendix

Let us assume the regularity conditions 1–3 of Shu et al. (2007). Theorem 1 is Lemma 1(ii) of their work.

Proof of Theorem 2

Using Lemmas 1 and 2 of Shu et al. (2007),

$$ \begin{array}{rll} &&\sqrt{n}\left[\hat{S}_{0}\left(\frac{q}{w_0}, {\bf Z}_0\right)-S_{0}\left(\frac{q}{w_0}, {\bf Z}_0\right)\right]\\ &&{\kern12pt}\quad = n^{-1/2} \displaystyle \sum\limits_{i=1}^n \left\{W_{1i}^{(0)}(q)+W_{2i}^{(0)}(q)+ W_{3i}^{(0)}(q)\right\}+o_p(1), \label{P1} \end{array} $$
(15)

where

$$ \begin{array}{rll} W_{1i}^{(0)}(q)&=& Q^{(0)}\left(\frac{q}{w_0}, \beta \right)^{T} \Omega^{-1} \displaystyle \sum\limits_{hj} \int_0^{\infty} \{{\bf Z}_{hji}-E_{hji}(\beta, u)\} dM_{hji}(u),\\ Q^{(0)}\left(\frac{q}{w_0}, \beta \right) &=& -S_0\left(\frac{q}{w_0}; {\bf Z}_0 \right) \left[\displaystyle \int_0^{\frac{q}{w_0}}\{{\bf Z}_{010}-e_{01}(\beta, u)\}d\Lambda_{01}(u;{\bf Z}_0) \right. \\ & &\,\,\,\,\,\qquad\qquad\qquad + \left. \int_0^{\frac{q}{w_0}}\{{\bf Z}_{020}-e_{02}(\beta, u)\}d\Lambda_{02}(u;{\bf Z}_0)\right], \\ W_{2i}^{(0)}(q) &=& -nS_0\left(\frac{q}{w_0}; {\bf Z}_0 \right) \exp\left(\beta^{T} {\bf Z}_{010}\right) \displaystyle \int_0^{\frac{q}{w_0}} \frac{J_0(u) dM_{01i}(u)}{S_{01}^{(0)}(\beta, u)},\\ W_{3i}^{(0)}(q) &=& -nS_0\left(\frac{q}{w_0}; {\bf Z}_0 \right)\exp\left(\beta^{T} {\bf Z}_{020}\right) \displaystyle \int_0^{\frac{q}{w_0}} \frac{J_0(u) dM_{02i}(u)}{S_{02}^{(0)}(\beta, u)}. \end{array} $$

Note that, for each q, the right hand side of Eq. 15 is essentially a sum of n independent and identically distributed zero-mean random variables. Using the arguments of Shu et al. (2007), we conclude that \(\sqrt{n}\big[\hat{S}_0(\cdot ; {\bf Z}_0)-S_0(\cdot; {\bf Z}_0)\big]\) converges weakly to a zero-mean Gaussian process with covariance function at \(\left(\frac{q}{w_0}, \frac{q'}{w_0}\right)\) given by

$$ \begin{array}{rll} &&\psi^{(0)}\left(\frac{q}{w_0}, \frac{q'}{w_0}\right)\\ &&{\kern12pt} = \frac{1}{n} \displaystyle \sum\limits_{i=1}^n \mbox{cov}\left\{W_{1i}^{(0)}(q)+W_{2i}^{(0)}(q)+W_{3i}^{(0)}(q), W_{1i}^{(0)}(q')\!+\! W_{2i}^{(0)}(q') \!+\! W_{3i}^{(0)}(q')\right\}\\ &&{\kern12pt} = Q^{(0)}\left(\frac{q}{w_0}, \beta \right)^{T} \Omega^{-1} \frac{1}{n}E\left[\displaystyle \sum\limits_{hj} \int_0^{\infty} \left\{ \frac{S_{hj}^{(2)}(\beta, u)}{S_{hj}^{(0)}(\beta, u)} -E_{hj}(\beta, u)^{\otimes 2} \right\} \right. \\ & & \qquad\qquad\qquad\qquad\,\,\,\,\left.\phantom{\frac{S_{hj}^{(2)}(\beta, u)}{S_{hj}^{(0)}(\beta, u)}}\times S_{hj}^{(0)}(\beta, u) d\Lambda_{hj0}(u)\right] \Omega^{-1} Q^{(0)}\left(\frac{q'}{w_0}, \beta \right) \\ & &\qquad+\, n S_0\left(\frac{q}{w_0}; {\bf Z}_0\right)S_0\left(\frac{q'}{w_0}; {\bf Z}_0\right)\{\exp\left(\beta^{T} {\bf Z}_{010}\right)\}^2 E \!\left\{\!\displaystyle \int_0^{\frac{q}{w_0} \wedge \frac{q'}{w_0}} \frac{J_0(u)d \Lambda_{01}(u)}{S_{01}^{(0)}(\beta, u)}\right\}\\ & & \qquad+\, n S_0\left(\frac{q}{w_0}; {\bf Z}_0\right) S_0\left(\frac{q'}{w_0}; {\bf Z}_0\right)\{\exp\left(\beta^{T} {\bf Z}_{020}\right)\}^2 E \!\left\{\!\displaystyle \int_0^{\frac{q}{w_0} \wedge \frac{q'}{w_0}} \frac{J_0(u)d \Lambda_{02}(u)}{S_{02}^{(0)}(\beta, u)}\right\} \end{array} $$

which, for q = q′, can be estimated uniformly consistently by Eq. 7 in Section 3.□

Proof of Theorem 3

Following the similar decomposition technique as that used in Voelkel and Crowley (1984) and Shu et al. (2007), we have

$$ \begin{array}{rll} &&{\kern-1pc}\sqrt{n}\left[\hat{P}_{12}\left(\frac{q}{w_0}; {\bf Z}_0\right)-P_{12}\left(\frac{q}{w_0}; {\bf Z}_0\right)\right]\\ && = n^{-1/2} \displaystyle \sum\limits_{i=1}^n \left\{W_{1i}^{(12)}(q)+W_{2i}^{(12)}(q)+W_{3i}^{(12)}(q) +W_{4i}^{(12)}(q)\right\}+o_p(1), \label{P12} \end{array} $$
(16)

where

$$ \begin{array}{rll} W_{1i}^{(12)} &=& Q^{(12)}\left(\frac{q}{w_0}, \beta \right)^{T} \Omega^{-1} \displaystyle \sum\limits_{hj} \int_0^{\infty} \{{\bf Z}_{hji}-E_{hji}(\beta, u)\} dM_{hji}(u), \\ W_{2i}^{(12)}(q)&=& n\displaystyle \int_0^{\frac{q}{w_0}} \left\{S_0(u; {\bf Z}_0) S_{12}\left(\frac{q-w_0u}{w_1}; {\bf Z}_0 \right) \right. \\ & & \,\,\quad\qquad\left. - \int_u^{\frac{q}{w_0}} S_0(x; {\bf Z}_0) S_{12}\left(\frac{q-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x)\right \},\\ & & \times \,\exp(\beta^T {\bf Z}_{010}) \frac{J_0(u) dM_{01i}(u)}{S_{01}^{(0)}(\beta, u)}, \end{array} $$
$$ \begin{array}{rll} W_{3i}^{(12)}(q)&=& -n\displaystyle \int_0^{\frac{q}{w_0}} \left\{ \int_u^{\frac{q}{w_0}} S_0(x; {\bf Z}_0) S_{12}\left(\frac{q-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x)\right \}\\ & & \times \,\exp\left(\beta^T {\bf Z}_{020}\right)\frac{J_0(u) dM_{02i}(u)}{S_{02}^{(0)}(\beta, u)}, \\ W_{4i}^{(12)}(q)&=& -n\displaystyle \int_0^{\frac{q}{w_1}} \left\{ \int_0^{\frac{q-w_1 u}{w_0}} S_0(x; {\bf Z}_0) S_{12}\left(\frac{q-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{12}(x)\right \} \\ & & \times \,\exp\left(\beta^T {\bf Z}_{120}\right)\frac{J_1(u) dM_{12i}(u)}{S_{12}^{(0)}(\beta, u)}, \\ Q^{(12)}\left(\frac{q}{w_0}, \beta \right) & =& \displaystyle \int_0^{\frac{q}{w_0}} S_0\left(u; {\bf Z}_0 \right) S_{12}\left(\frac{q-w_0 u}{w_1}; {\bf Z}_0\right)\\ & &\times\,\left[\big\{{\bf Z}_{010}-e_{01}(\beta, u)\big\} - \int_0^{u}\big\{{\bf Z}_{010}-e_{01}(\beta, x)\big\}d\Lambda_{01}(x;{\bf Z}_0) \right. \\ & & -\int_0^{u}\big\{{\bf Z}_{020}-e_{02}(\beta, x)\big\}d\Lambda_{02}(x;{\bf Z}_0) \\ & & \left. -\int_0^{u}\big\{{\bf Z}_{120}-e_{12}(\beta, x)\big\}d\Lambda_{12}(x;{\bf Z}_0) \right] d\Lambda_{01}(u;{\bf Z}_0). \end{array} $$

Note that, for each q, the right hand side of Eq. 16 is essentially a sum of n independent and identically distributed zero-mean random variables. Using the arguments of Shu et al. (2007), we conclude that \(\sqrt{n}\left[\hat{P}_{12}(\cdot)-P_{12}(\cdot)\right]\) converges weakly to a zero-mean Gaussian process with covariance function at \(\left(\frac{q}{w_0}, \frac{q'}{w_0} \right)\) given by

$$ \begin{array}{rll} \psi^{(12)}\left(\frac{q}{w_0}, \frac{q'}{w_0}\right)&=& \frac{1}{n} \displaystyle \sum\limits_{i=1}^n \mbox{cov}\left\{W_{1i}^{(12)}(q)+W_{2i}^{(12)}(q)+W_{3i}^{(12)}(q)+W_{4i}^{(12)}(q), \right. \\ & &\left. W_{1i}^{(12)}(q')+W_{2i}^{(12)}(q')+W_{3}^{(12)}(q')+ W_{4i}^{(12)}(q')\right\} \\ &=& Q^{(12)}\left(\frac{q}{w_0}, \beta \right)^{T} \Omega^{-1} \\ &&\times\,\frac{1}{n}E\left[\displaystyle \sum\limits_{hj} \int_0^{\infty}\left\{ \frac{S_{hj}^{(2)}(\beta, u)}{S_{hj}^{(0)}(\beta, u)} -E_{hj}(\beta, u)^{\otimes 2} \right\} \right. \\ & &\quad \times \left. S_{hj}^{(0)}(\beta, u) d\Lambda_{hj0}(u)\vphantom{\sum_{hj} \int_0^{\infty}\left\{ \frac{S_{hj}^{(2)}(\beta, u)}{S_{hj}^{(0)}(\beta, u)} -E_{hj}(\beta, u)^{\otimes 2} \right\}}\right] \Omega^{-1} Q^{(12)}\left(\frac{q'}{w_0}, \beta \right) \end{array} $$
$$ \begin{array}{rll} & &+\, nE\left[ \!\displaystyle \int_0^{\frac{q}{w_0} \wedge \frac{q'}{w_0}} \!\left\{S_0(u; {\bf Z}_0) S_{12}\left(\frac{q-w_0u}{w_1}; {\bf Z}_0\right) \!-\!\! \int_u^{\frac{q}{w_0}}\! S_0(x; {\bf Z}_0)\right. \right. \\ & &\qquad\qquad\qquad \left. \times\, S_{12}\left(\frac{q-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x; {\bf Z}_0)\vphantom{\int_u^{\frac{q}{w_0}}}\right \} \\ & &\qquad\qquad \times \left\{S_0(u; {\bf Z}_0) S_{12}\left(\frac{q'-w_0u}{w_1}; {\bf Z}_0\right) \vphantom{\int_u^{\frac{q'}{w_0}}}\right. \\ & &\qquad\qquad\qquad \left. \left. - \int_u^{\frac{q'}{w_0}} S_0(x; {\bf Z}_0) S_{12}\left(\frac{q'-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x; {\bf Z}_0)\right \} \right. \\ & & \left. \times \left\{\exp(\beta^{T} {\bf Z}_{010})\right\}^2 J_0(u) \frac{d \Lambda_{01}(u)}{S_{01}^{(0)}(\beta, u)}\vphantom{\displaystyle \int_0^{\frac{q}{w_0} \wedge \frac{q'}{w_0}}}\right] \\ & & +\, nE\left[ \displaystyle \int_0^{\frac{q}{w_0} \wedge \frac{q'}{w_0}} \left\{\int_u^{\frac{q}{w_0}}S_0(x; {\bf Z}_0) S_{12}\right.\right.\\ &&\qquad\qquad\qquad\qquad\qquad \left.\times\left(\frac{q-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x; {\bf Z}_0)\vphantom{\displaystyle \int_0^{\frac{q}{w_0} \wedge \frac{q'}{w_0}}}\right\} \\ & &\qquad\qquad\qquad \left. \times \left\{\int_u^{\frac{q'}{w_0}}S_0(x; {\bf Z}_0) S_{12}\left(\frac{q'-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x; {\bf Z}_0)\right\} \right. \\ & &\qquad\qquad\qquad \left. \times \left\{\exp\left(\beta^T {\bf Z}_{020}\right)\right\}^2 J_0(u) \frac{d \Lambda_{02}(u)}{S_{02}^{(0)}(\beta, u)}\right]\\ & & +\, n E\left[\displaystyle \int_0^{\frac{q}{w_1} \wedge \frac{q'}{w_1}} \left\{\int_0^{\frac{q-w_1 u}{w_0}}S_0(x; {\bf Z}_0) S_{12}\right.\right.\\ &&\qquad\qquad\qquad\qquad \left.\times\left(\frac{q-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x; {\bf Z}_0)\right\} \\ & & \left. \times \left\{\int_0^{\frac{q'-w_1 u}{w_0}}S_0(x; {\bf Z}_0) S_{12}\left(\frac{q'-w_0x}{w_1}; {\bf Z}_0\right) d \Lambda_{01}(x)\right\} \right. \\ & & \left. \times \, \left\{\exp\left(\beta^T {\bf Z}_{120}\right)\right\}^2 J_1(u) \frac{d \Lambda_{12}(u)}{S_{12}^{(0)}(\beta, u)}\right] \end{array} $$

which, for q = q′, can be estimated uniformly consistently by Eq. 8 in Section 3.□

Proof of Theorem 4

Note that

$$ \begin{array}{rll} \sqrt{n}\left[\hat{S}_{Q}\left(q; {\bf Z}_0\right)-S_{Q}\left(q; {\bf Z}_0\right)\right]&=&\sqrt{n}\left[\hat{S}_{0}\left(\frac{q}{w_0}; {\bf Z}_0\right)-S_{0}\left(\frac{q}{w_0}; {\bf Z}_0\right)\right] \\ & & +\sqrt{n}\left[\hat{P}_{12}\left(\frac{q}{w_0}; {\bf Z}_0\right)-P_{12}\left(\frac{q}{w_0}; {\bf Z}_0\right)\right]. \end{array} $$

Hence, by some rearrangement of terms and following the techniques used in the proofs of Theorems 2 and 3, \(\sqrt{n}\left[\hat{S}_{Q}\left(q; {\bf Z}_0\right)-S_{Q}\left(q; {\bf Z}_0\right)\right]\) can be written as a sum of n independent and identically distributed zero mean random variables. The weak convergence result follows by using similar arguments. The covariance term in Theorem 4 is given by

$$ \begin{array}{rll} &&{\kern-6pt} \mbox{cov}\left[\!\sqrt{n}\left\{\hat{S}_{0}\left(\frac{q}{w_0}; {\bf Z}_0 \right)\!-\!S_{0}\left(\frac{q}{w_0}; {\bf Z}_0\right)\right\}, \sqrt{n}\left\{\hat{P}_{12}\left(\frac{q}{w_0}; {\bf Z}_0\right)\!-\!P_{12}\left(\frac{q}{w_0}; {\bf Z}_0\right)\!\right\}\!\right]\\ &&=\frac{1}{n} \displaystyle \sum\limits_{i=1}^n \mbox{cov}\left\{W_{1i}^{(0)}(q)+W_{2i}^{(0)}(q)+W_{3i}^{(0)}(q), \right.\\ & & \qquad\qquad\qquad\left. W_{1i}^{(12)}(q)+W_{2i}^{(12)}(q)+W_{3i}^{(12)}(q)+W_{4i}^{(12)}(q)\right\} +o_p(1)\\ &&= Q^{(0)}\left(\frac{q}{w_0}, \beta \right)^{T} \Omega^{-1}\frac{1}{n}E\left[\displaystyle \sum\limits_{hj} \int_0^{\infty} \left\{ \frac{S_{hj}^{(2)}(\beta, u)}{S_{hj}^{(0)}(\beta, u)} -E_{hj}(\beta, u)^{\otimes 2} \right\} \right. \\ & &\qquad\qquad\qquad\qquad\qquad \times \left. S_{hj}^{(0)}(\beta, u) d\Lambda_{hj0}(u)\vphantom{\displaystyle \sum_{hj} \int_0^{\infty} \left\{ \frac{S_{hj}^{(2)}(\beta, u)}{S_{hj}^{(0)}(\beta, u)} -E_{hj}(\beta, u)^{\otimes 2} \right\}}\right] \Omega^{-1} Q^{(12)}\left(\frac{q'}{w_0}, \beta \right) \\ &&\quad -\, n S_{0}\left(\frac{q}{w_0}; {\bf Z}_0\right) \left\{\exp(\beta^T {\bf Z}_{010})\right\}^2\\ &&\quad\times E\,\left[ \displaystyle \int_0^{\frac{q}{w_0}} \left\{S_0(u; {\bf Z}_0) S_{12}\left(\frac{q-w_0u}{w_1}; {\bf Z}_0\right) \right. \right.\\ & &\qquad\qquad\qquad \left. \left. - \int_u^{\frac{q}{w_0}} S_0(x; {\bf Z}_0) S_{12}\left(\frac{q-w_0x}{w_1}; {\bf Z}_0 \right) d \Lambda_{01}(x)\right \} J_0(u) \frac{d \Lambda_{01}(u)}{S_{01}^{(0)}(\beta, u)} \right]\\ &&\quad +\, nS_{0}\left(\frac{q}{w_0}\right) \{\exp(\beta^T {\bf Z}_{020})\}^2 \\ &&\quad\times E\,\left[\displaystyle \int_0^{\frac{q}{w_0}} \left\{\int_u^{\frac{q}{w_0}} S_0(x) S_{12}\left(\frac{q-w_0 x}{w_1}\right) d \Lambda_{01}(x)\right \} J_0(u) \frac{d \Lambda_{02}(u)}{S_{02}^{(0)}(\beta, u)} \right] + o_p(1), \end{array} $$

which can be estimated uniformly consistently by Eq. 10 in Section 3.□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, B., Dewanji, A. Semiparametric estimation of quality adjusted lifetime distribution in semi-Markov illness–death model. Sankhya B 73, 81–104 (2011). https://doi.org/10.1007/s13571-011-0020-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-011-0020-1

Keywords

AMS 2000 Subject Classifications

Navigation