Skip to main content
Log in

Overexpression of the Arabidopsis ceramide synthase gene AtLOH1 enhances plant cold stress tolerance

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Arabidopsis ceramide synthase gene AtLOH1 plays important roles in cell growth and abiotic stress responses. However, we do not know if the AtLOH1 gene play a role in low temperature stress in plant cells. In this investigation, overexpression of the AtLOH1 gene was performed in rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobus L.) using Agrobacterium tumefaciens strain GV3101-mediated transformation. Overexpression of the AtLOH1 gene in O. sativa, G. hirsutum, and P. strobus was confirmed by molecular methods including PCR, Southern, and northern blotting analyses. Low temperature stress was examined in O. sativa, G. hirsutum, and P. strobus by analyzing three AtLOH1 transgenic cell lines from each of rice, cotton, and pine. Increasing cell viability and cell growth rate, decreasing lipid peroxidation and ion leakage, as well as elevating the activity of antioxidative enzymes and the content of polyamines, suggest that overexpression of the AtLOH1 gene enhanced low temperature stress tolerance. Overexpression of the AtLOH1 increases expression of polyamines biosynthesis genes in transgenic O. sativa cells and improves survival rate of transgenic P. strobus shoots and plantlets under cold stress. These results indicated that overexpression of the AtLOH1 gene in plant cells enhanced cold stress tolerance by elevating polyamines content, antioxidative enzyme activity, and expression of polyamine biosynthesis genes. Overexpression of the AtLOH1 gene could be a valuable approach for engineering plant cold stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This article does not contain any large-scale data.

Abbreviations

APOX:

 Ascorbate peroxidase

CAT:

Catalase

PPO:

Polyphenol oxidase

POD:

Peroxidase

AtLOH1 :

Arabidopsis ceramide synthase gene 1

PCR:

Polymerase chain reaction

AtLOH2 :

Arabidopsis ceramide synthase gene 2

AtLOH3:

Arabidopsis ceramide synthase gene 3

EDTA :

Ethylenediaminetetraacetic acid

PVP:

Polyvinylpyrrolidone

OsSAMDC1 :

S-adenosylmethionine decarboxylase gene 1

OsSAMDC2 :

S-adenosylmethionine decarboxylase gene 2

OsSAMDC3 :

S-adenosylmethionine decarboxylase gene 3

OsSAMDC4 :

S-adenosylmethionine decarboxylase gene 4

OsSAMDC5 :

S-adenosylmethionine decarboxylase gene 5

OsSAMDC6 :

S-adenosylmethionine decarboxylase gene 6

OsADC1 :

Arginine decarboxylase gene 1

OsADC2 :

Arginine decarboxylase gene 2

OsADC3 :

Arginine decarboxylase gene 3

OsODC1 :

Ornithine decarboxylase gene 1

OsODC2 :

Ornithine decarboxylase gene 2

OsODC3 :

Ornithine decarboxylase gene 3

OsCPA1 :

Carbamoylputrescine amidase gene 1

OsCPA2 :

Carbamoylputrescine amidase gene 2

OsCPA3 :

Carbamoylputrescine amidase gene 3

OsSPD/SPM1 :

Spermidine / spermine synthase gene 1

OsSPD/SPM2 :

 Spermidine / spermine synthase gene 1

OsSPD/SPM3 :

Spermidine / spermine synthase gene 1

OsSPD/SPM4 :

Spermidine / spermine synthase gene 1

TBARS:

Thiobarbituric acid reactive substances

TBA:

Thiobarbituric acid

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

References

  • Adhikari B, Adhikari M, Ghimire B, Park G, Choi EH (2019) Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in Tomato seedlings. Sci Rep 9:16080

    Article  PubMed  PubMed Central  Google Scholar 

  • Alabdallah O, Ahou A, Mancuso N, Pompili V, Macone A, Pashkoulov D, Stano P, Cona A, Angelini R, Tavladoraki P (2017) The Arabidopsis polyamine oxidase/dehydrogenase 5 interferes with cytokinin and auxin signaling pathways to control xylem differentiation. J Exp Bot 68:997–1012

    Article  CAS  PubMed  Google Scholar 

  • Arfan M, Zhang DW, Zou LJ, Luo SS, Tan WR, Zhu T, Lin HH (2019) Hydrogen peroxide and nitric oxide crosstalk mediates Brassinosteroids Induced Cold stress tolerance in Medicago truncatula. Int J Mol Sci 20:452

    Article  Google Scholar 

  • Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G (2019) Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. Int J M Sci 20:456

    Google Scholar 

  • Awan ZA, Shoaib A, Khan KA (2019) Crosstalk of Zn in combination with other fertilizers underpins interactive effects and induces resistance in tomato plant against early blight disease. Plant Pathol J 35:330–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu MM, Gonzalez-Carranza ZH, Azam-Ali S, Tang S, Shahid AA, Roberts JA (2013) The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding. Plant Physiol 162:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belteton SA, Sawchuk MG, Donohoe BS, Scarpella E, Szymanski DB (2018) Reassessing the roles of PIN proteins and Anticlinal Microtubules during pavement cell morphogenesis. Plant Physiol 176:432–449

    Article  CAS  PubMed  Google Scholar 

  • Beltran J, Wamboldt Y, Sanchez R, LaBrant EW, Kundariya H, Virdi KS, Elowsky C, Mackenzie SA (2018) Specialized Plastids trigger tissue-specific signaling for systemic stress response in plants. Plant Physiol 178:672–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beshamgan ES, Sharifi M, Zarinkamar F (2019) Crosstalk among polyamines, phytohormones, hydrogen peroxide, and phenylethanoid glycosides responses in Scrophularia striata to Cd stress. Plant Phys Biochem PPB 143:129–141

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2009) Involvement of calcium and calmodulin in oxidative and temperature stress of Amaranthus lividus L. during early germination. J Environ Biol 30:557–562

    CAS  PubMed  Google Scholar 

  • Bustamante A, Marques MC, Sanz-Carbonell A, Mulet JM, Gomez G (2018) Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Sci Rep 8:15538

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha JY, Lee DY, Ali I, Jeong SY, Shin B, Ji H, Kim JS, Kim MG, Kim WY (2019) Arabidopsis GIGANTEA negatively regulates chloroplast biogenesis and resistance to herbicide butafenacil. Plant Cell Rep 38:793–801

    Article  CAS  PubMed  Google Scholar 

  • Chandra Rai A, Singh M, Shah K (2012) Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol Biochem PPB 61:108–114

    Article  CAS  PubMed  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dametto A, Sperotto RA, Adamski JM, Blasi EA, Cargnelutti D, de Oliveira LF, Ricachenevsky FK, Fregonezi JN, Mariath JE, da Cruz RP, Margis R, Fett JP (2015) Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Sci Int J Exp Plant Biol 238:1–12

    CAS  Google Scholar 

  • Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K (2019) Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in Pigeonpea. Sci Rep 9:18191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Kohl KI, Hincha DK, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS ONE 8:e60325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do PT, Drechsel O, Heyer AG, Hincha DK, Zuther E (2014) Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front Plant Sci 5:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Firnhaber C, Puhler A, Kuster H (2005) EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. Planta 222:269–283

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Haider MS, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J (2018) Transcriptome sequence analysis elaborates a complex defensive mechanism of Grapevine (Vitis vinifera L.) in response to salt stress. Int J Mol Sci 19:456

    Article  Google Scholar 

  • Gupta S, Dong Y, Dijkwel PP, Mueller-Roeber B, Gechev TS (2019) Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. Int J Mol Sci 20:785

    Article  Google Scholar 

  • Gutierrez-Beltran E, Personat JM, de la Torre F, Del Pozo O (2017) A Universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6. Plant Physiol 173:836–852

    Article  CAS  PubMed  Google Scholar 

  • Jang EK, Min KH, Kim SH, Nam SH, Zhang S, Kim YC, Cho BH, Yang KY (2009) Mitogen-activated protein kinase cascade in the signaling for polyamine biosynthesis in tobacco. Plant Cell Physiol 50:658–664

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kazemi-Shahandashti SS, Maali-Amiri R (2018) Global insights of protein responses to cold stress in plants: signaling, defence, and degradation. J Plant Physiol 226:123–135

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Han JM, Jin YY, Baek NI, Bang MH, Chung HG, Choi MS, Lee KT, Sok DE, Jeong TS (2008) In vitro antioxidant and anti-inflammatory activities of Jaceosidin from Artemisia princeps Pampanini cv. Sajabal Arch Pharm Res 31:429–437

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008b) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC (2013) Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol 54:1660–1672

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Park SC, Yun BW, Kwak SS (2017) Overexpressing sweetpotato peroxidase gene swpa4 affects nitric oxide production by activating the expression of reactive oxygen species- and nitric oxide-related genes in tobacco. Plant Physiol Biochem PPB 120:52–60

    Article  CAS  PubMed  Google Scholar 

  • Koramutla MK, Kaur A, Negi M, Venkatachalam P, Bhattacharya R (2014) Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). Planta 240:177–194

    Article  CAS  PubMed  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant Hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:4865

    Article  Google Scholar 

  • Kumar M, Sirhindi G, Bhardwaj R, Kumar S, Jain G (2010) Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. Indian J Biochem Biophys 47:378–382

    CAS  PubMed  Google Scholar 

  • Kusano T, Sagor GHM, Berberich T (2018) Molecules for sensing polyamines and transducing their action in plants. Methods Mol Biol 1694:25–35

    Article  CAS  PubMed  Google Scholar 

  • Luttgeharm KD, Chen M, Mehra A, Cahoon RE, Markham JE, Cahoon EB (2015) Overexpression of Arabidopsis ceramide synthases differentially affects growth, Sphingolipid Metabolism, programmed cell death, and Mycotoxin resistance. Plant Physiol 169:1108–1117

    Article  PubMed  PubMed Central  Google Scholar 

  • Luttgeharm KD, Cahoon EB, Markham JE (2016) Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochem J 473:593–603

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Coulter JA, Liu L, Zhao Y, Chang Y, Pu Y, Zeng X, Xu Y, Wu J, Fang Y, Bai J, Sun W (2019) Transcriptome analysis reveals key cold-stress-responsive genes in Winter Rapeseed (Brassica rapa L.). Int J Mol Sci 20:4965

    Article  Google Scholar 

  • McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW, Martin-Fernandez ML, Hawes C, Runions J (2019) The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc Natl Acad Sci USA 116:12857–12862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferruzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Wan PJ, Yuan SY, Lai FX, Wang WX, Fu Q (2018) Differential responses of OsMPKs in IR56 rice to two BPH populations of different virulence levels. Int J Mol Sci 19:785

    Article  Google Scholar 

  • Nawrocka J, Malolepsza U, Szymczak K, Szczech M (2018) Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma 255:359–373

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H (2005) Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to bax and abiotic stress-induced plant cell death. Plant Physiol 138:1436–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci Int J Exp Plant Biol 237:16–23

    CAS  Google Scholar 

  • Pathak MR, Teixeira da Silva JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phung TH, Jung HI, Park JH, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangan P, Subramani R, Kumar R, Singh AK, Singh R (2014) Recent advances in polyamine metabolism and abiotic stress tolerance. BioMed Res Int 2014

  • Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, Boudaoud A, Roeder AHK (2019) Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc Natl Acad Sci USA 116:25333–25342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawicki M, Rondeau M, Courteaux B, Rabenoelina F, Guerriero G, Gomes E, Soubigou-Taconnat L, Balzergue S, Clement C, Ait Barka E, Vaillant-Gaveau N, Jacquard C (2019) On a cold night: transcriptomics of grapevine flower unveils signal transduction and impacted metabolism. Int J Mol Sci 20:423

    Article  Google Scholar 

  • Seifi HS, Shelp BJ (2019) Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front Plant Sci 10:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevastre-Berghian AC, Toma VA, Sevastre B, Hanganu D, Vlase L, Benedec D, Oniga I, Baldea I, Olteanu D, Moldovan R, Decea N, Filip GA, Clichici SV (2018) Characterization and biological effects of Hypericum extracts on experimentally-induced-anxiety oxidative stress and inflammation in rats. J Physiol Pharmacol 69:789

    CAS  Google Scholar 

  • Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, Kumar A, Agarwal M (2015) De novo transcriptome profiling of cold-stressed siliques during pod filling stages in indian mustard (Brassica juncea L.). Front Plant Sci 6:932

    Article  PubMed  PubMed Central  Google Scholar 

  • Soledad ON, Florencia MM, Laura FM, Raul DG, Balbina AA, Pia OF (2015) Potassium phosphite increases tolerance to UV-B in potato. Plant Physiol Biochem PPB 88:1–8

    Article  PubMed  Google Scholar 

  • Sutton F, Paul SS, Wang XQ, Assmann SM (2000) Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes. Plant Physiol 124:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Page M (2013) Transcription factor AtbZIP60 regulates expression of Ca2+ -dependent protein kinase genes in transgenic cells. Mol Biol Rep 40:2723–2732

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Thompson WA (2019) OsmiR528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in Plant cells. Curr Genom 20:100–114

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ, Lin J, Charles TM (2006) Expression of a transcription factor from Capsicum annuum in pine calli counteracts the inhibitory effects of salt stress on adventitious shoot formation. Mol Genet Genomics MGG 276:242–253

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  CAS  PubMed  Google Scholar 

  • Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, Riezman H, Feussner I (2011) Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytol 192:841–854

    Article  CAS  PubMed  Google Scholar 

  • Torrigiani P, Bressanin D, Ruiz KB, Tadiello A, Trainotti L, Bonghi C, Ziosi V, Costa G (2012) Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant 146:86–98

    Article  CAS  PubMed  Google Scholar 

  • Ulhassan Z, Huang Q, Gill RA, Ali S, Mwamba TM, Ali B, Hina F, Zhou W (2019) Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. BMC Plant Biol 19:507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Sun H, Hakim, Yang X, Zhang X (2018) A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant 162:439–454

    Article  CAS  PubMed  Google Scholar 

  • Vicentini TM, Cavalheiro AH, Dechandt CRP, Alberici LC, Vargas-Rechia CG (2019) Aluminum directly inhibits alternative oxidase pathway and changes metabolic and redox parameters on Jatropha curcas cell culture. Plant Physiol Biochem PPB 136:92–97

    Article  CAS  PubMed  Google Scholar 

  • Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L, Wang FZ, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Shi J, Zhang JH, Aharoni A, Yao N, Shu W, Xiao S (2015) Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 11:e1005143

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the instrumentation facility of the university for providing necessary experiment set up. We appreciate the University Council of Scientific Research for support. We thank Dr. Prasad, Dr. Lischewski, and Dr. Page for their critical reading and suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WT and WAT conceived and designed the experiments. WT wrote the paper. WT and WAT performed the experiment and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Thompson, W.A. Overexpression of the Arabidopsis ceramide synthase gene AtLOH1 enhances plant cold stress tolerance. J. Plant Biochem. Biotechnol. 32, 487–502 (2023). https://doi.org/10.1007/s13562-023-00830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-023-00830-8

Keywords

Navigation