Skip to main content
Log in

Structure-based prediction of protein–protein interactions between GhWlim5 Domain1 and GhACTIN-1 proteins: a practical evidence with improved fibre strength

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cotton fibre quality is a multigenic trait. Genetic modification of different genes to achieve high quality fibre is difficult without knowing the mechanism lying behind genes interaction. Based on background knowledge an attempt to explore the potential structural interactions between Gossypium hirsutum Wlim5 domain1 and Gossypium hirsutum ACTIN-1 proteins was done in current study. Sequence features of the LIM domain1 of GhWlim5 protein were identified through multiple sequence alignment analysis, and a phylogenetic tree was built to identify evolutionary relationships between sequences. Conservation indicated the evolutionary importance of side chain residues and the presence of several aliphatic and/or bulky residues, which stabilize the protein core and facilitate packing of zinc fingers. The structures of GhWlim5 domain1 and GhACTIN-1 proteins were modelled and validated through computational methods. Validation of GhACTIN-1 and GhWlim5 domain1 structures indicated good structural quality with 99.7% and 100% of the favoured number of residues in allowed regions and Z-score, within the ranges of − 9.87 and − 4.17, respectively. Docking analysis indicated various possible modes of interaction between these two proteins with favourable binding affinities. Based on our strong binding interaction results between GhWlim5 domain1 and GhACTIN-1 proteins, we further investigated the role of over-expression of GhWlim5 by transformation in cotton plants under fibre specific promoter and transgenic plants displayed significant increases in fibre strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABPs:

Actin binding proteins

LIM:

LIN-11, ISL-1 and MEC-3

HMM:

Hidden Markov model

PDB:

Protein data bank

IDT:

Integrated DNA technologies

GUS:

β-glucuronidase

EDTA:

Ethylenediaminetetraacetic acid

RT-qPCR:

Quantitative reverse transcription polymerase chain reaction

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  • Ahad A, Ahmad A, Din S, Rao AQ, Shahid AA, Husnain TJF (2015) In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers. Front Plant Sci 6:751

    Article  Google Scholar 

  • Ahmad A et al (2015) In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against lepidopteran targets using molecular docking. Front Plant Sci 6:1081

    PubMed  PubMed Central  Google Scholar 

  • Arnaud D et al (2012) Expression analysis of LIM gene family in poplar, toward an updated phylogenetic classification. BMC Res Notes 5(1):102. https://doi.org/10.1186/1756-0500-5-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bach I (2000) The LIM domain: regulation by association. Mech Dev 91(1–2):5–17

    Article  CAS  Google Scholar 

  • Chen CY et al (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14(9):2175–2190

    Article  CAS  Google Scholar 

  • Cheung AY et al (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14(4):945–962

    Article  CAS  Google Scholar 

  • Dong C-H, Xia G-X, Hong Y, Ramachandran S, Kost B, Chua N-H (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13(6):1333–1346

    Article  CAS  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11(4):727–738

    Article  CAS  Google Scholar 

  • Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14(4):777–794

    Article  CAS  Google Scholar 

  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11(7):797–806. https://doi.org/10.1038/ncb1886

    Article  CAS  PubMed  Google Scholar 

  • Han L-B et al (2013) The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 113:116970

    Google Scholar 

  • Han L, Li Y, Sun Y, Wang H, Kong Z, Xia G (2016) The two domains of cotton WLIM1a protein are functionally divergent. Sci China Life Sci 59(2):206–212

    Article  CAS  Google Scholar 

  • Hooft RW, Sander C, Vriend G (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. Bioinformatics 13(4):425–430

    Article  CAS  Google Scholar 

  • Huang S, An YQ, McDowell JM, McKinney EC, Meagher RBJTPJ (1996) The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development. Plant J 10(2):189–202

    Article  CAS  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19(2):201–203. https://doi.org/10.1385/mb:19:2:201

    Article  CAS  PubMed  Google Scholar 

  • Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5(11):920

    Article  CAS  Google Scholar 

  • Kandasamy MK, McKinney EC, Meagher RB (2002) Functional nonequivalency of actin isovariants in Arabidopsis. Mol Biol Cell 13(1):251–261

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  Google Scholar 

  • Komis G, Luptovciak I, Doskocilova A, Samaj J (2015) Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 33(6):1043–1062

    Article  CAS  Google Scholar 

  • Kost B, Mathur J, Chua N-H (1999) Cytoskeleton in plant development. Curr Opin Plant Biol 2(6):462–470

    Article  CAS  Google Scholar 

  • Kuroda S et al (1996) Protein–protein interaction of zinc finger LIM domains with protein kinase C. J Biol Chem 271(49):31029–31032

    Article  CAS  Google Scholar 

  • Latif A et al (2015) Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Res Notes 8(1):453. https://doi.org/10.1186/s13104-015-1397-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11(9):1731–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-B, Fan X-P, Wang X-L, Cai L, Yang W-C (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17(3):859–875

    Article  CAS  Google Scholar 

  • Li F et al (2009) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chin Sci Bull 54(7):1210–1216

    Article  CAS  Google Scholar 

  • Li Y et al (2013) A cotton LIM domain-containing protein (GhWLIM5) is involved in bundling actin filaments. Plant Physiol Biochem 66:34–40

    Article  CAS  Google Scholar 

  • Li L, Li Y, Wang NN, Li Y, Lu R, Li XB (2015) Cotton LIM domain-containing protein Gh PLIM 1 is specifically expressed in anthers and participates in modulating F-actin. Plant Biol 17(2):528–534

    Article  CAS  Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An Y-Q, Meagher RB (1996) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142(2):587–602

    Article  CAS  Google Scholar 

  • Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773

    Article  CAS  Google Scholar 

  • Rao AQ, Irfan M, Saleem Z, Nasir IA, Riazuddin S, Husnain T (2011) Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J Zhejiang Univ Sci B 12(4):326–334. https://doi.org/10.1631/jzus.B1000168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu M et al (2013) In silico prediction and characterization of three-dimensional structure of Actin-1 of Arabidopsis thaliana. BioTechnol J Biotechnol Comput Biol Bionanotechnol 94:4

    Google Scholar 

  • Satyavathi V, Prasad V, Lakshmi BG, Sita GLPS (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162(2):215–223

    Article  CAS  Google Scholar 

  • Seagull RW (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101(3):561–577

    Article  Google Scholar 

  • Thomas C et al (2007) The LIM domains of WLIM1 define a new class of actin bundling modules. J Biol Chem 282(46):33599–33608

    Article  CAS  Google Scholar 

  • Velyvis A, Qin J (2005) LIM domain and its binding to target proteins zinc finger proteins. Springer, New York, pp 99–105

    Book  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–W410

    Article  Google Scholar 

  • Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118(4):651–654

    Article  CAS  Google Scholar 

  • Yang Z (1998) Signaling tip growth in plants. Curr Opin Plant Biol 1(6):525–530

    Article  CAS  Google Scholar 

  • Zhang J, Stewart JJJCS (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4(3):193–201

    CAS  Google Scholar 

  • Zhang M et al (2017) Overexpression of GhFIM2 propels cotton fiber development by enhancing actin bundle formation. J Integr Plant Biol 59(8):531–534

    Article  CAS  Google Scholar 

  • Zhao L et al (2016) Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Mol Phylogenet Evol 105:166–176

    Article  Google Scholar 

  • Zheng Q, Zhao Y (2007) The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein–protein interaction. Biol Cell 99(9):489–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Centre of Excellence in Molecular Biology University of the Punjab and the School of Plant Sciences, University of Arizona, USA. We extend our gratitude to the Center for Electron Microscopy Zhejiang University in Hangzhou China, for SEM microscopy and to the Central Cotton Research Institute, Multan, Pakistan for fibre analysis.

Author information

Authors and Affiliations

Authors

Contributions

The concept and the experimental design were initiated by Adnan Iqbal and David W. Galbraith. Bio-informatics analyses was performed by Adnan Iqbal, Basit Jabbar and Muhammad Azam Ali. Cotton plant transformation was done by Adnan Iqbal and Ayesha Latif. Molecular characterization of transgenic cotton plants was done by Adnan Iqbal and Mukhtar Ahmad. Review of literature; Adnan Iqbal and Abdul Qayyum Rao. Data collection and analysis; Adnan Iqbal and Basit Jabbar. Preparation of main manuscript; Adnan Iqbal and Ahmad Ali Shahid. Critical review of manuscript; David W. Galbraith, Abdul Qayyum Rao and Tayyab Husnain; Approval of the final version of manuscript; Adnan Iqbal, Ambreen Gul, David W. Galbraith, Abdul Qayyum Rao and Tayyab Husnain. The manuscript was read by all authors and approved for publication.

Corresponding author

Correspondence to Adnan Iqbal.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Latif, A., Galbraith, D.W. et al. Structure-based prediction of protein–protein interactions between GhWlim5 Domain1 and GhACTIN-1 proteins: a practical evidence with improved fibre strength. J. Plant Biochem. Biotechnol. 30, 373–386 (2021). https://doi.org/10.1007/s13562-020-00603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-020-00603-7

Keywords

Navigation