Skip to main content

Advertisement

Log in

GH32 family activity: a topological approach through protein contact networks

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

The application of Protein Contact Networks methodology allowed to highlight a novel response of border region between the two domains to substrate binding.

Abstract

Glycoside hydrolases (GH) are enzymes that mainly hydrolyze the glycosidic bond between two carbohydrates or a carbohydrate and a non-carbohydrate moiety. These enzymes are involved in many fundamental and diverse biological processes in plants. We have focused on the GH32 family, including enzymes very similar in both sequence and structure, each having however clear specificities of substrate preferences and kinetic properties. Structural and topological differences among proteins of the GH32 family have been here identified by means of an emerging approach (Protein Contact network, PCN) based on the formalization of 3D structures as contact networks among amino-acid residues. The PCN approach proved successful in both reconstructing the already known functional domains and in identifying the structural counterpart of the properties of GH32 enzymes, which remain uncertain, like their allosteric character. The main outcome of the study was the discovery of the activation upon binding of the border (cleft) region between the two domains. This reveals the allosteric nature of the enzymatic activity for all the analyzed forms in the GH32 family, a character yet to be highlighted in biochemical studies. Furthermore, we have been able to recognize a topological signature (graph energy) of the different affinity of the enzymes towards small and large substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altenbach D, Nüesch E, Meyer AD, Boller T, Wiemken A (2004) The large subunit determines catalytic specificity of barley sucrose:fructan 6-fructosyltransferase and fescue sucrose:sucrose 1-fructosyltransferase. FEBS Lett 567(2–3):214–218. doi:10.1016/j.febslet.2004.04.064

    Article  CAS  PubMed  Google Scholar 

  • Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S (2004) Network analysis of protein structures identifies functional residues. J Mol Biol 344(4):1135–1146. doi:10.1016/j.jmb.2004.10.055

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya, M, Ghosh S, Vishveshwara S (2016) Protein structure and function: looking through the network of side-chain interactions. Curr Protein Pept Sci 17(1):4–25

    Article  CAS  PubMed  Google Scholar 

  • Cimini S, Locato V, Vergauwen R, Paradiso A, Cecchini C, Vandenpoel L, Verspreet J et al (2015) Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Front Plant Sci 6:89. doi:10.3389/fpls.2015.00089

    Article  PubMed  PubMed Central  Google Scholar 

  • Cumbo F, Paci P, Santoni D, Di Paola L, Giuliani A. 2014. GIANT: a cytoscape plugin for modular networks. PLoS One. doi:10.1371/journal.pone.0105001

    PubMed  PubMed Central  Google Scholar 

  • De Ruvo M, Giuliani A, Paci P, Santoni D, Di Paola L (2012) Shedding light on protein–ligand binding by graph theory: the topological nature of allostery. Biophys Chem 165–166:21–29. doi:10.1016/j.bpc.2012.03.001

    Article  PubMed  Google Scholar 

  • Ende VW, Coopman M, Clerens S, Vergauwen R, Roy KL, Lammens W, Van Laere A (2011) Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. Plant Physiol 155(1):603–614. doi:10.1104/pp.110.162222

    Article  PubMed  Google Scholar 

  • Giuliani, A, Paola LD (2016) Protein as networks: will contact maps hold the promise to represent the ‘structural-formula’ of protein molecules? Curr Protein Pept Sci 17(1):3

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Paola LD, Setola R (2009) Proteins as networks: a mesoscopic approach using haemoglobin molecule as case study. Curr Proteomics 6(4):235–245

    Article  CAS  Google Scholar 

  • Guimerà R, Sales-Pardo M, Amaral LAN (2006) Classes of complex networks defined by role-to-role connectivity profiles. Nat Phys 3:63–69

    Article  Google Scholar 

  • Gutman I, Zhou B (2006) Laplacian energy of a graph. Linear Algebra Appl 414(1):29–37. doi:10.1016/j.laa.2005.09.008

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based sequence similarities amino acid. Biochem J 280(Pt 2):309–316. doi:10.1007/s007920050009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn M, Van Den Edne W, Lammens W, Rybin V, Scheffzek K (2010) Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Proc Natl Acad Sci USA. doi:10.1073/pnas.1004481107

    PubMed  PubMed Central  Google Scholar 

  • Krishnan A, Zbilut JP, Tomita M, Giuliani A (2008) Proteins as networks: usefulness of graph theory in protein science. Curr Protein Pept Sci 9:28–38

    Article  CAS  PubMed  Google Scholar 

  • Lammens W, Roy KL, Van Laere A, Rabijns A, Van Den Ende W (2008) Crystal structures of arabidopsis thaliana cell-wall invertase mutants in complex with sucrose. J Mol Biol 377(2):378–385. doi:10.1016/j.jmb.2007.12.074

    Article  CAS  PubMed  Google Scholar 

  • Lammens W, Roy KL, Schroeven L, Van Laere A, Rabijns A, Van Den Ende W (2009) Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot 60(3):727–740. doi:10.1093/jxb/ern333

    Article  CAS  PubMed  Google Scholar 

  • Lammens W, Roy KL, Yuan S, Vergauwen R, Rabijns A, Van Laere A, Strelkov SV, Van Den Ende W (2012) Crystal structure of 6-SST/6-SFT from pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Plant J 70(2):205–219. doi:10.1111/j.1365-313X.2011.04858.x

    Article  CAS  PubMed  Google Scholar 

  • Le Roy K Verhaest M, Rabijns A, Clerens S, Van Laere A, Van Den Ende W (2007) N-Glycosylation affects substrate specificity of chicory fructan 1-exohydrolase: evidence for the presence of an inulin binding cleft. New Phytol 176:317–324. doi:10.1111/j.1469-8137.2007.02174.x

    Article  PubMed  Google Scholar 

  • Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594. doi:10.1093/nar/gkh477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrai J, Lammens W, Jonckheer A, Le Roy K, Rabijns A, Van den Ende W, De Maeyer M (2007) An alternate sucrose binding mode in the e203q arabidopsis invertase mutant: an X-ray crystallography and docking study. Proteins 71:552–564 http://www.rcsb.org/pdb/explore/explore.do?structureId=2OXB

    Article  Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 723–740. doi:10.1007/s00425-007-0668-y

  • Oliva G, Di Paola L, Giuliani A, Pascucci F, Setola R (2013) Assessing protein resilience via a complex network approach. In: IEEE 2nd Network Science Workshop (NSW), pp 131–137

  • Paci P, Di Paola L, Santoni D, De Ruvo M, Giuliani A (2012) Structural and functional analysis of hemoglobin and serum albumin through protein long-range interaction networks. Curr Proteomics 9(3):160–166

    Article  CAS  Google Scholar 

  • Paola DL, De Ruvo M, Paci P, Santoni D, Giuliani A (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113(3):1598–1613. doi:10.1021/cr3002356

    Article  PubMed  Google Scholar 

  • Paola DL, Platania CBiancaM, Oliva G, Setola R, Pascucci F, Giuliani A (2015) Characterization of protein–protein interfaces through a protein contact network approach. Front Bioeng Biotechnol 3:1–10. doi:10.3389/fbioe.2015.00170

    Article  Google Scholar 

  • Paola D, Luisa GM, Di Venere A, Giuliani A (2016) Exploring the stability of dimers through protein structure topology. Curr Protein Pept Sci 17(1):30–36. doi:10.2174/1389203716666150923104054

    Article  PubMed  Google Scholar 

  • Platania CBM, Di Paola L, Leggio GM, Romano GL, Drago F, Salomone S, Bucolo C (2015) Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach. Front Pharmacol 6:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Pons T, Naumoff DG, Martínez-Fleites C, Hernández L (2004) Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins 54(3):424–432. doi:10.1002/prot.10604

    Article  CAS  PubMed  Google Scholar 

  • Tasdighian S, Paola LD, De Ruvo M, Paci P, Santoni D, Palumbo P, Mei G, Di Venere A, Giuliani A (2014) Modules identification in protein structures: the topological and geometrical solutions. J Chem Inf Model 54:159–168. doi:10.1021/ci400218v

    Article  CAS  PubMed  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. In: Manhold R, Kubinyi H, Timmermann H (eds) Methods and principles in medicinal chemistry, vol 11. Wiley VCH, Weinheim

  • Trollope KM, van Wyk N, Kotjomela MA, Volschenk H (2015) Sequence and structure-based prediction of fructosyltransferase activity for functional sub-classification of fungal GH32 enzymes. FEBS J. doi:10.1111/febs.13536

    PubMed  Google Scholar 

  • Tsai CJ, del Sol A, Nussinov R (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 378(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullman JD, Yannakakis M (1991) High-probability parallel transitive-closure algorithms. SIAM J Comput 20(1):100–125

    Article  Google Scholar 

  • Verhaest M, Ende WV, Roy KL, De Ranter CJ, Van Laere A, Rabijns A (2005a) X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J Cell Mol Biol 41(3):400–411. doi:10.1111/j.1365-313X.2004.02304.x

    Article  CAS  Google Scholar 

  • Verhaest M, Le Roy K, Stefaan S, De Coninck B, Lammens W, De Ranter CJ, Van Laere A, Van Den Ende W, Rabijns A (2005b) Crystallization and preliminary x-ray diffraction study of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr 61:766–768. doi:10.1107/S1744309105021421

    CAS  Google Scholar 

  • Verhaest M, Lammens W, Le Roy K, De Coninck B, De Ranter CJ, Van Laere A, Van Den Ende W, Rabijns A (2006a) X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr 62(Pt 12):1555–1563. doi:10.1107/S0907444906044489

    CAS  Google Scholar 

  • Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, Van den Ende W (2007) Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol 174(1):90–100. doi:10.1111/j.1469-8137.2007.01988.x

    Article  CAS  PubMed  Google Scholar 

  • Verspreet J, Cimini S (2013) Fructan metabolism in developing wheat (Triticum aestivum L.) kernels. Plant Cell 54(12):2047–2057. doi:10.1093/pcp/pct144

    Article  CAS  Google Scholar 

Download references

Author contributions

All authors have seen and approved the manuscript and its contents, and that they are aware of the responsibilities connected to authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Di Paola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7365 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimini, S., Di Paola, L., Giuliani, A. et al. GH32 family activity: a topological approach through protein contact networks. Plant Mol Biol 92, 401–410 (2016). https://doi.org/10.1007/s11103-016-0515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0515-2

Keywords

Navigation