Skip to main content
Log in

AtA6PR1 and AtA6PR2 encode putative aldose 6-phosphate reductases that are cytosolically localized and respond differentially to cold and salt stress in Arabidopsis thaliana

  • Short Communication
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sorbitol is synthesized in Rosaceae species, especially in source organs, in a pathway involving aldose 6-phosphate reductase (A6PR, EC 1.1.1.200). As compatible solutes, sorbitol and other sugar alcohols assist in the ability of the plant to withstand abiotic stress conditions. Here, we identify two tandemly-duplicated genes in a non-Rosaceae species (Arabidopsis thaliana L.), and show that the proteins encoded by At2g21250 (AtA6PR1) and At2g21260 (AtA6PR2) possess the molecular characteristics of A6PRs. Consistent with bioinformatic predictions, we determined that green fluorescent protein-tagged versions of AtA6PR1 and AtA6PR2 are cytosolically localized, a finding supported by immunoblotting using a specific anti-AtA6PR1 antisera after subcellular fractionation of Arabidopsis leaves. We also show that under standard growth conditions, both genes are widely-expressed, whilst AtA6PR1 protein accumulates in both source and sink organs. Under short term (24 h) cold (4 °C) or saline (150 mM NaCl) stress, both genes respond differentially and reciprocally in leaf and root tissues, suggesting a sub-functionalization of their roles. The identification of homozygous T-DNA insertional ata6pr1-mutants will facilitate the functional characterization of this gene, and help to determine its role under abiotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

A6PR:

Aldose 6-phosphate reductase

GFP:

Green fluorescent protein

NADP(H):

Nicotinamide adenine dinucleotide phosphate (reduced)

SDH:

Sorbitol dehydrogenase

References

  • Aguayo MF, Ampuero D, Mandujano P, Parada R, Muñoz R, Gallart M, Altabella T, Cabrera R, Stange C, Handford M (2013) Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana. Plant Sci 205–206:63–75

    Article  PubMed  CAS  Google Scholar 

  • Aguayo MF, Cáceres JC, Fuentealba M, Muñoz R, Stange C, Cabrera R, Handford M (2015) Polyol specificity of recombinant Arabidopsis thaliana sorbitol dehydrogenase studied by enzyme kinetics and in silico modeling. Front Plant Sci 6:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso JM et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bohren KM, Page JL, Shankar R, Henry SP, Gabbay KH (1991) Expression of human aldose and aldehyde reductases. J Biol Chem 266:24031–24037

    PubMed  CAS  Google Scholar 

  • Carvallo MA, Pino M-T, Jeknic Z, Zou C, Doherty CJ, Shiu S-H, Chen THH, Thomashow MF (2011) A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot 62:3807–3819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YA, Wen YC, Chang WC (2012) AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana. BMC Genom 13:85

    Article  CAS  Google Scholar 

  • Cheng L, Zhou R, Reidel EJ, Sharkey TD, Dandekar AM (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta 220:767–776

    Article  PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK (2005) Genome-wide identification and testing of superior reference genes for transcript normalization. Plant Physiol 139:5–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duangsrisai S, Yamada K, Bantog NA, Shiratake K, Kanayama Y, Yamaki S (2007) Presence and expression of NAD(+)-dependent sorbitol dehydrogenase and sorbitol-6-phosphate dehydrogenase genes in strawberry. J Hort Sci Biotechnol 82:191–198

    Article  CAS  Google Scholar 

  • Ebert B, Zöller D, Erban A, Fehrle I, Hartmann J, Niehl A, Kopka J, Fisahn J (2010) Metabolic profiling of Arabidopsis thaliana epidermal cells. J Exp Bot 61:1321–1335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figueroa CM, Iglesias AA (2010) Aldose-6-phosphate reductase from apple leaves: importance of the quaternary structure for enzyme activity. Biochimie 92:81–88

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845

    Article  PubMed  CAS  Google Scholar 

  • Haritatos E, Medville R, Turgeon R (2000) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–111

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  CAS  Google Scholar 

  • Hirai M (1981) Purification and characterization of sorbitol-6-phosphate dehydrogenase from loquat leaves. Plant Physiol 67:221–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito J, Batth TS, Petzold CJ, Redding-Johanson AM, Mukhopadhyay A, Verboom R, Meyer EH, Millar AH, Heazlewood JL (2011) Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J Proteome Res 10:1571–1582

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 130–132:499–525

    Article  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  PubMed  CAS  Google Scholar 

  • Kanayama Y (2009) Physiological roles of polyols in horticultural crops. J Jpn Soc Hort Sci 78:158–168

    Article  CAS  Google Scholar 

  • Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2006) Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J Jpn Soc Hort Sci 75:20–25

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HY, Ahn JC, Choi JH, Hwang B, Choi DW (2007) Expression and cloning of the full-length cDNA for sorbitol-6-phosphate dehydrogenase and NAD-dependent sorbitol dehydrogenase from pear (Pyrus pyrifolia N.). Sci Hortic 112:406–412

    Article  CAS  Google Scholar 

  • Liang D, Cui M, Wu S, Ma FW (2012) Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Rep 30:904–914

    Article  CAS  Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60:328–339

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of Gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  PubMed  CAS  Google Scholar 

  • Nosarzewski M, Downie AB, Wu B, Archbold DD (2012) The role of sorbitol dehydrogenase in Arabidopsis thaliana. Funct Plant Biol 39:462–470

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tao R, Uratsu S, Dandekar A (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36:525–532

    Article  PubMed  CAS  Google Scholar 

  • Teo G, Suzuki Y, Uratsu SL, Lampinen B, Ormonde N, Hu W, DeJong T, Dandekar A (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847

    Article  PubMed  CAS  Google Scholar 

  • Utz D, Handford M (2015) VvGONST-A and VvGONST-B are Golgi-localised GDP-sugar transporters in grapevine (Vitis vinifera L.). Plant Sci 231:191–197

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Yin X, Zeng J, Ge H, Song M, Xu C, Li X, Ferguson IB, Chen K (2014) Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. J Exp Bot 65:4349–4359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaki S, Ishikawa K (1986) Role of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Am Soc Hort Sci 111:134–137

    CAS  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

This work was financed by Fondecyt 1140527 and 1181198 (M.H.). We thank Dr. M. R. Bono and Dr. L. Vargas for producing the anti-AtA6PR1 antisera, NASC Nottingham Arabidopsis Stock Centre (UK) for supplying the ata6pr1-1 and ata6pr1-2 seeds, and all past and present members of the Centro de Biología Molecular Vegetal for valuable discussions, especially Karina Olivos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Handford.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary Fig. S1

Sequence analysis of AtA6PRs of Arabidopsis. Alignment of the protein sequences of AtA6PR1 (At2g21250), AtA6PR2 (At2g21260) and MdA6PR (from apple, Genbank NP_001280957; Kanayama et al. 1992; Figueroa and Iglesias 2010) using ESPript 3.0. Black shading and boxed lettering indicate identical residues and conservative substitutions, respectively. The 3 aldo/keto reductase signature family regions are underlined, and asterisks highlight the conserved IPKS/T motif (TIFF 7567 kb)

Supplementary Fig. S2

Specificity of anti-AtA6PR1 antisera. Total soluble proteins was isolated from 100 mg of 10 d-old seedlings of Arabidopsis grown on MS plates (Murashige and Skoog 1962). Samples (25 µg) were resolved by SDS-PAGE. WT, wild-type plants; ata6pr1-1 and ata6pr1-2, SALK T-DNA insertional mutants (SALK_021705 and SALK_028553, respectively). Upper panel: Immunoblot analysis using mouse polyclonal anti-AtA6PR1 primary antisera (1:4000) and an anti-mouse alkaline phosphatase-conjugated secondary antibody (Sigma, goat, 1:25,000). Lower panel: Coomassie-stained gel (TIFF 2543 kb)

Supplementary Fig. S3

Response of positive control genes in Arabidopsis to cold and salt stress. Transcript levels were analyzed by real-time quantitative RT-PCR, using total RNA isolated at different time points from one-month old plants subjected to a cold stress (4 °C, AtCOR27) or b saline stress (150 mM NaCl, AtWRKY33), respectively. The data were normalized using At1g13320 (PP2A) levels as a control (Czechowski et al. 2005), and transcript levels calibrated to 1.0 at the start of the experiment (0 h) for each gene in each organ. Different letters indicate significant differences as determined using one-way ANOVA and a Tukey post-test (p < 0.05); standard error bars are displayed (n = 3) (TIFF 1592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, B., Wurman, J., Zamudio, M.S. et al. AtA6PR1 and AtA6PR2 encode putative aldose 6-phosphate reductases that are cytosolically localized and respond differentially to cold and salt stress in Arabidopsis thaliana. J. Plant Biochem. Biotechnol. 28, 114–119 (2019). https://doi.org/10.1007/s13562-018-0459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0459-5

Keywords

Navigation