Skip to main content

Genome-wide identification and expression analysis of sulphate transporter (SULTR) genes under sulfur deficiency in Brachypodium distachyon

Abstract

Sulphur is an important mineral element for plant growth and development. It involves in a number of metabolic processes with crucial functions. This study has performed a genome-wide analysis of sulfate transporter (SULTR) genes in Brachypodium distachyon. Ten putative SULTR genes were identified in Brachypodium genome. BdSULTR genes included 6–17 exons encoding a protein of 647–693 residues with basic nature. BdSULTR proteins included both sulfate_transp (PF00916) and STAS (PF01740) domains. BdSULTRs were classified into 4 groups based on the phylogenetic distribution. Promoter regions of all BdSULTR genes, except for BdSULTR3;3 and 3;5 included the SURECOREATSULTR11 elements. A considerable structural overlap was identified between superimposed SULTR1;3 and 3;1 proteins, indicating that SULTR1 members may also involve in plant stress response/tolerance like SULTR3 members. Microarray and RNA-Seq analyses also revealed the differential expression of SULTR 1 and 3 genes under different biotic/abiotic stresses. Protein–protein interaction partners of BdSULTRs were mainly related with adenylyl-sulfate kinases, 5′-adenylylsulfate reductases, ATP sulfurylases, and acyl carrier proteins. Moreover, expression profiles of identified BdSULTR genes under S-deficiency were analyzed using RT-qPCR. It was revealed that BdSULTR1;1 and 3;1 are highly expressed in plant roots as ~tenfold and ~fivefold, respectively, while BdSULTR2 (~15-fold) and 3;1 (~twofold) are abundantly expressed in leaf tissues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SULTR:

Sulfate transporters

CELLO:

subCELlularLOcalization predictor

GEO:

Gene Expression Omnibus

CRE:

cis-regulatory elements

TMDs:

Transmembrane domains

References

  1. Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:659–673

    CAS  Article  PubMed  Google Scholar 

  2. Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Plant Physiol 125:95–105

    CAS  Article  Google Scholar 

  3. Bernsel A, Viklund H, Falk J, Lindahl E, Von Heijne G, Elofsson A (2008) Prediction of membrane protein topology from first principles. Proc Natl Acad Sci 105:7177–7181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bevan MW, Garvin DF, Vogel JP (2010) Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotech 21:211–217

    CAS  Article  PubMed  Google Scholar 

  5. Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773

    CAS  Article  PubMed  Google Scholar 

  6. Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3; 1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    CAS  Article  PubMed  Google Scholar 

  7. Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M et al (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    CAS  Article  PubMed  Google Scholar 

  8. Caraux G, Pinloche S (2005) Permut matrix: a graphical environment to arrange gene expression profiles in optimallinear order. Bioinformatics 21(7):1280–1281

    CAS  Article  PubMed  Google Scholar 

  9. Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    CAS  Article  PubMed  Google Scholar 

  10. Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation—the same or not the same? Mol Plant 3:314–325

    CAS  Article  PubMed  Google Scholar 

  11. Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon: a new model system forfunctional genomics in grasses. Plant Physiol 127:1539–1555

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Edgar R, Domrachev M, Lash A (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS ONE 6:e17973

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Mering CV, Jensen LJ (2013) STRING v9. 1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815

    Article  Google Scholar 

  15. Gallardo K, Courty PE, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607

    Chapter  Google Scholar 

  17. Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45

    Article  PubMed  Google Scholar 

  18. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  19. Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evo. 19:256–262

    CAS  Article  Google Scholar 

  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  21. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE database: 1999. Nucleic Acids Res 27:297–300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2012) Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:1873–1893

    CAS  Article  PubMed  Google Scholar 

  23. Howarth J, Fourcroy P, Davidian J-C, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infectionby the vascular pathogen Verticillium dahliae. Planta 218:58–64

    CAS  Article  PubMed  Google Scholar 

  24. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  25. Hyung D, Lee C, Kim JH, Yoo D, Seo YS, Jeong SC et al (2014) Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula. PLoS ONE 9:e91721. doi:10.1371/journal.pone.0091721

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Prot 10:845–858

    CAS  Article  Google Scholar 

  28. Kumar S, Asif MA, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273

    CAS  Article  PubMed  Google Scholar 

  29. Lovell SC, Davis IW, Arendall WB, Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: φ, ψ, and Cβ deviation. Proteins 50:437–450

    CAS  Article  PubMed  Google Scholar 

  30. Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86:309–323

    CAS  Article  PubMed  Google Scholar 

  31. Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55:1843–1849

    CAS  Article  PubMed  Google Scholar 

  32. Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    CAS  Article  PubMed  Google Scholar 

  33. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods 5(7):621–628

    CAS  Article  PubMed  Google Scholar 

  34. Nguyen MN, Tan KP, Madhusudhan MS (2011) CLICK: topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res 39:W24–W28

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Ozdemir BS, Hernandez P, Filiz E, Budak H (2009) Brachypodium genomics. Int J Plant Genomics. doi:10.1155/2008/536104

    Google Scholar 

  36. Parey K, Demmer U, Warkentin E, Wynen A, Ermler U, Dahl C (2013) Structural, biochemical and genetic characterization of dissimilatory ATP Sulfurylase from Allochromatium vinosum. PLoS ONE 8(9):e7470

    Article  Google Scholar 

  37. Pasquet JC, Chaouch S, Macadré C, Balzergue S, Huguet S, Martin-Magniette ML, Bellvert F, Deguercy X, Thareau V, Heintz D et al (2014) Differential gene expression and metabolomics analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genom 15:629

    Article  Google Scholar 

  38. Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  39. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res. doi:10.1093/nar/gkr1065

    PubMed Central  Google Scholar 

  40. Rae AL, Smith FW (2002) Localization of expression of a high affinity sulfate transporter in barley roots. Planta 215:565–568

    CAS  Article  PubMed  Google Scholar 

  41. Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P (2005) Structural and functional analysis ofthe C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983

    CAS  Article  PubMed  Google Scholar 

  42. Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC et al (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM (2010) Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenerg Res 3:38–46

    Article  Google Scholar 

  44. Shibagaki N, Grossman AR (2006) The role of the STAS domain inthe function and biogenesis of a sulfate transporter as probed byrandom mutagenesis. J Biol Chem 281:22964–22973

    CAS  Article  PubMed  Google Scholar 

  45. Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transportof sulfate into roots. Plant J 29:475–486

    CAS  Article  PubMed  Google Scholar 

  46. Smith FW, Ealing PM, Hawkesford MJ, Clarkson T (1995) Plantmembers of a family of sulfate transporters reveal functional sub types. Proc Natl Acad Sci 92:9373–9377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integrationand network visualization. Bioinformatics 27:431–432

    CAS  Article  PubMed  Google Scholar 

  48. Takahashi H (2010) Regulation of sulfate transport and assimilation inplants. Int Rev Cell Mol Biol 281:129–159

    CAS  Article  PubMed  Google Scholar 

  49. Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida-Engler J, Engler G, van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulphate starved roots plays a central role inArabidopsis thaliana. Proc Natl Acad Sci 94:11102–11107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    CAS  Article  PubMed  Google Scholar 

  51. Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2012) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  54. Timothy L, Mikael Bodén B, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  Google Scholar 

  55. Tjellström H, Strawsine M, Silva J, Cahoon EB, Ohlrogge JB (2013) Disruption of plastid acyl: acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 587:936–942

    Article  PubMed  Google Scholar 

  56. Tombuloglu H, Ablazov A, Filiz E (2016) Genome-wide analysis of response to low sulfur (LSU) genes in grass species and expression profiling of model grass species Brachypodium distachyon under S deficiency. Turkish J Biol. doi:10.3906/biy-1508-32

    Google Scholar 

  57. Verelst W, Bertolini E, De Bodt S, Vandepoele K, Demeulenaere M, Pè ME, Inzé D (2013) Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6:311–322

    CAS  Article  PubMed  Google Scholar 

  58. Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate inArabidopsis root. Plant J 29:465–473

    CAS  Article  PubMed  Google Scholar 

  59. Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1; 3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    CAS  Article  PubMed  Google Scholar 

  62. Zhang Z, Grewer C (2007) The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophysical J 92:2621–2632

    CAS  Article  Google Scholar 

  63. Zuber H, Davidian JC, Aubert G, Aime D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010a) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010b) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol 10:78

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1725 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tombuloglu, H., Filiz, E., Aydın, M. et al. Genome-wide identification and expression analysis of sulphate transporter (SULTR) genes under sulfur deficiency in Brachypodium distachyon . J. Plant Biochem. Biotechnol. 26, 263–273 (2017). https://doi.org/10.1007/s13562-016-0388-0

Download citation

Keywords

  • Abiotic stress
  • Microarray
  • Protein interactions
  • SULTR
  • Sulphur deficiency
  • SURE box