Skip to main content
Log in

In silico characterization, and expression analysis of rice golden 2-like (OsGLK) members in response to low phosphorous

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The availability of phosphorus (P) affects productivity of rice. Under acidic soil conditions (pH < 5.5), P is rapidly immobilized in the soil. Several transcription factors play an important role in low Pi tolerance response, including MYB family members but their role in acidic soil is yet unknown. In this study, genome wide identification and characterization of golden 2-like (GLK) members belonging to GARP superfamily from rice (OsGLK) led to identification of 46 members distributed over 12 chromosomes. We assigned gene nomenclature, analyzed gene structure and identified mutant orthologs and phenotypes in maize and rice, respectively. On the basis of biological functions three categories viz., (a) two-component response regulator (five members), (b) putative transcription factor (21 members) and (c) phosphate starvation response (8 members) were identified. Phylogenetic analysis revealed a total of nine subgroups with MYB homeodomain-like and MYB CC-type domains conserved across members. Expression profiling of OsGLKs in response to 24 and 48 h of low Pi in four contrasting rice genotypes, revealed significantly higher expression of OsGLK10, OsGLK15, OsGLK22 and OsGLK30 in tolerant genotypes as compared to susceptible genotypes, suggesting their role in Pi starvation tolerance. Meta analyses and cis-regulatory elements (CREs) profiling of OsGLK showed diverse expression pattern in various tissues and organs and also modulation in response to various abiotic and biotic stresses. Our results highlight the versatile role of this diverse and complex GLK family, in particular to abiotic stress. These genes will form the basis of future studies on low Pi tolerance in acidic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    CAS  PubMed  Google Scholar 

  2. Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    CAS  PubMed  Google Scholar 

  3. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–537

    CAS  PubMed  Google Scholar 

  4. Hall LN, Rossini L, Cribb L, Langdale JA (1998) GOLDEN2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10:925–936

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen M, Ji M, Wen B, Liu L, Li S, Chen X, Gao D, Li L (2016) GOLDEN2-LIKE transcription factors of plants. Plant Sci 7:1509

    Google Scholar 

  6. Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y, Hirochika H, Takano M, Ichikawa H (2009) Ectopic over expression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol 50:1933–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yasumura Y, Moylan E, Langdale JA (2005) A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell 17:1894–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    CAS  PubMed  Google Scholar 

  10. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G-L (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    CAS  PubMed  Google Scholar 

  11. Safi A, Medici A, Szponarski W, Ruffel S, Lacombe B, Krouk G (2017) The world according to GARP transcription factors. Curr Opin Plant Biol 39:159–167

    CAS  PubMed  Google Scholar 

  12. Savitch LV, Subramaniam R, Allard GC, Singh J (2007) The GLK1 ‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium graminearum in&nbsp;Arabidopsis. Biochem Biophys Res Commun 359(2):234–238

    CAS  PubMed  Google Scholar 

  13. Han XY, Li PX, Zou LJ, Tan WR, Zheng T, Zhang DW, Lin HH (2016) GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis. Biochem Biophys Res Commun 4:626–632

    Google Scholar 

  14. Tamai H, Iwabuchi M, Meshi T (2002) Arabidopsis GARP transcriptional activators interact with the pro-rich activation domain shared by G-box- binding bZIP factors. Plant Cell Physiol 43:99–107

    CAS  PubMed  Google Scholar 

  15. Rauf M, Arif M, Dortay H, Matallana-Ramírez LP, Waters MT, Nam HG, Lim PO, Mueller‐Roeber B, Balazadeh S (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14:382–388

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    CAS  PubMed  Google Scholar 

  17. Al-Daoud F, Cameron RK (2011) ANAC055 and ANAC092 contribute non-redundantly in an EIN2-dependent manner to age-related resistance in Arabidopsis. Physiol Mol Plant Pathol 76:212–222

    CAS  Google Scholar 

  18. Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA 105:4939–4944

    PubMed  Google Scholar 

  19. Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T (2012) Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 24:1081–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Petridis A, Döll S, Nichelmann L, Bilger W, Mock H (2016) Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol 211:912–925

    CAS  PubMed  Google Scholar 

  21. Tyagi W, Rai M (2017) Root transcriptome of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance. Protoplasma 254:725–736

    CAS  PubMed  Google Scholar 

  22. Yumnam JS, Rai M, Tyagi W (2017) Allele mining across two low-P tolerant genes PSTOL1 and PupK20-2 reveals novel haplotypes in rice genotypes adapted to acidic soils. Plant Genet Resour 15:221–229

    CAS  Google Scholar 

  23. Tiwari KK, Singh A, Pattnaik S, Sandhu M, Kaur S, Jain S, Tiwari S, Mehrotra S, Anumalla M, Samal R, Bhardwaj J, Dubey N, Sahu V, Kharshing GA, Zeliang PK, Sreenivasan K, Kumar P, Parida SK, Mithra SVA, Rai V, Tyagi W, Agrawal PK, Rao AR, Pattanayak A, Chandel G, Singh AK, Bisht IS, Bhat KV, Rao GJN, Khurana JP, Singh NK, Mohapatra T (2015) Identification of a diverse mini-core panel of Indian rice germplasm based on genotyping using microsatellite markers. Plant Breed 134:164–171

    CAS  Google Scholar 

  24. Dutta SS, Tyagi W, Pale G, Pohlong J, Aochen C, Pandey A, Pattanayak A, Rai M (2018) Marker–trait association for low-light intensity tolerance in rice genotypes from Eastern India. Mol Genet Genom 293:1493–1506

    CAS  Google Scholar 

  25. Chai G, Hu R, Zhang D, Qi G, Zuo R, Cao Y, Chen P, Kong Y, Zhou G (2012) Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 13:253

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu X, Widmer A (2014) Genome-wide comparative analysis of the GRAS gene family in Populus, Arabidopsis and rice. Plant Mol Biol Rep 32:1129–1145

    CAS  Google Scholar 

  27. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative realtime PCR. Biochem Biophys Res Commun 345:646–651

    CAS  PubMed  Google Scholar 

  28. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  29. Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187

    CAS  PubMed  Google Scholar 

  30. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    PubMed  PubMed Central  Google Scholar 

  31. Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei Z (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9:1667–1670

    CAS  PubMed  Google Scholar 

  32. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P (2014) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA 111:14953–14958

    CAS  PubMed  Google Scholar 

  37. Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruan W, Meina G, Ping W, Keke Y (2017) Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Mol Biol 93:237–340

    Google Scholar 

  39. Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W (2015) The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol 168:1076–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bazin J, Bailey-Serres J (2015) Emerging roles of long non-coding RNA in root developmental plasticity and regulation of phosphate homeostasis. Front Plant Sci 6:40

    Google Scholar 

  41. Jia Y, Tian H, Li H, Yu Q, Wang L, Friml J, Ding Z (2015) The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. J Exp Bot 66:4631–4642

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from Indian Council of Agricultural Research (NAIP; component IV; C30033/415101-036) and Department of Biotechnology, Government of India (BT/566/NE/U-excel/2016/72). KLB was supported by NFST from Ministry of Tribal Affairs, University Grant Commission, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

KLB, MR and WT conceived the research plan and designed the experiments. KLB, ELN and EG performed the experiments. KLB and ELN wrote the draft. KLB and WT analyzed the data. WT and MR reviewed and edited the paper, providing helpful comments and discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wricha Tyagi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhutia, K.L., Nongbri, E.L., Gympad, E. et al. In silico characterization, and expression analysis of rice golden 2-like (OsGLK) members in response to low phosphorous. Mol Biol Rep 47, 2529–2549 (2020). https://doi.org/10.1007/s11033-020-05337-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05337-2

Keywords

Navigation