Skip to main content
Log in

A potential role of UBC28 interacting RING finger protein TaRF1 in spike development of wheat

  • ORIGINAL ARTICLE
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

RING finger proteins are the most abundant proteins in plants and may be essential for diverse aspects of cellular regulation in plant growth and development. Many RING finger proteins are E3 ubiquitin ligases, which play important roles in protein-protein interactions and ubiquitin-dependent protein degradation. The TaRF1 gene encodes a novel RING finger protein. In this study, we characterized the wheat (Triticum aestivum) RING finger domain as a hexapoid wheat ubiquitin ligase. To study the role of TaRF1 in wheat, we isolated TaRF1 from wheat spike cDNA. TaRF1 was 756 bp and encoded a putative 251-amino-acid with a predicted molecular mass of 28.57 kDa and isoelectric point of 5.75. A typical C3HC4-type RING finger domain was found at the C-terminal region of the TaRF1 protein. TaRF1 expression was investigated in the developmental stages and under various stresses by using reverse transcription polymerase chain reaction and was confirmed by subcellular localization of TaRF1 labeled with green fluorescent protein. Using the yeast 2-hybrid screen, we identified potential TaRF1-interacting proteins in a wheat spike library. Among the 8 clones that were identified as potential interacting partners of TaRF1 using yeast 2-hybrid screening, we found the strongest interaction between TaRF1 and the ubiquitin E2 enzyme TaUBC28 in tobacco leaves through biomolecular fluorescence complementation. The selectivity of interactions between E2 enzymes and RING E3 ligases represents a central and crucial part of the ubiquitin-conjugation pathways in organisms. These results indicate that the TaRF1 protein can interact with TaUBC28 in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BiFC:

Biomolecular fluorescence complementation

GFP:

Green fluorescent protein

HECT:

Homologous to the E6-AP carboxyl terminus

RING:

Really interesting new gene

Y2H:

Yeast 2-hybrid

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Barlow P, Luisi B, Milner A, Elliott M, Everett R (1994) Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 237:201–211

    Article  PubMed  CAS  Google Scholar 

  • Borden KLB, Freemont PS (1996) The RING finger domain: a recent example of a sequence—structure family. Curr Opin Struct Biol 6:395–401

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Nelson R, Sherwood J (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668

    PubMed  CAS  Google Scholar 

  • Chen D, Molitor A, Liu C, Shen WH (2010) The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res 20:1332–1344

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta A, Ramsey KL, Smith JS, Auble DT (2004) Sir Antagonist 1 (San1) is a ubiquitin ligase. J Biol Chem 279:26830–26838

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ, Joazeiro CAP (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  PubMed  CAS  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Guerra DD, Callis J (2012) Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum-and plasma membrane-localized proteins. Plant Physiol 160:56–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hardtke CS, Okamoto H, Stoop–Myer C, Deng XW (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 30:385–394

    Article  PubMed  CAS  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  PubMed  CAS  Google Scholar 

  • Hong MJ, Kim DY, Kang SY, Kim DS, Kim JB, Seo YW (2012) Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development. Mol Biol Rep 39:9681–9696

    Article  PubMed  CAS  Google Scholar 

  • Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 22:3557–3567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139:1597–1611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mabb AM, Ehlers MD (2010) Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 26:179–210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamura N (2011) The role of the transmembrane RING finger proteins in cellular and organelle function. Membranes 1:354–393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pratt WB, Krishna P, Olsen LJ (2001) Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci 6:54–58

    Article  PubMed  CAS  Google Scholar 

  • Qin R, Gao S, McDonald JA, Ajwa H, Shem-Tov S, Sullivan DA (2008) Effect of plastic tarps over raised-beds and potassium thiosulfate in furrows on chloropicrin emissions from drip fumigated fields. Chemosphere 72:558–563

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Sonoda Y, Yao SG, Sako K, Sato T, Kato W, Ohto M, Ichikawa T, Matsui M, Yamaguchi J, Ikeda A (2007) SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis. Plant J 50:586–596

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • VanDemark AP, Hill CP (2002) Structural basis of ubiquitylation. Curr Opin Struct Biol 12:822–830

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Deng XW (2011) Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 21:1286–1294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wen R, Newton L, Li G, Wang H, Xiao W (2006) Arabidopsis thaliana UBC13: implication of error-free DNA damage tolerance and Lys63-linked polyubiquitylation in plants. Plant Mol Biol 61:241–253

    Article  PubMed  CAS  Google Scholar 

  • Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53:289–298

    PubMed  CAS  Google Scholar 

  • Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Quinn Li Q (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 53:37–50

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu Y, Xu W, Wang S, Xu Y, Li H, Wang Y, Li S (2011) VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitispseudoreticulata, functions as a transcriptional activator in defence response of grapevine. J Exp Bot 62:5671–5682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17:2733–2740

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. This work was also supported by a grant from the Next-Generation Bio-Green 21 Program (Plant Molecular Breeding Center No. PJ0080312012), Rural Development Administration, Republic of Korea. This research was also supported by National Nuclear R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (No. 2012M2A2A6035566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Weon Seo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, M.J., Seo, Y.W. A potential role of UBC28 interacting RING finger protein TaRF1 in spike development of wheat. J. Plant Biochem. Biotechnol. 23, 421–429 (2014). https://doi.org/10.1007/s13562-013-0227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0227-5

Keywords

Navigation