Skip to main content
Log in

A method to overcome the waxy surface, cell wall thickening and polyphenol induced necrosis at wound sites - the major deterrents to Agrobacterium mediated transformation of bamboo, a woody monocot

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The method is the first successful report of Agrobacterium mediated genetic transformation of the commercially important bamboo, Dendrocalamus hamiltonii. It shows how the resistance provided by the somatic embryos of this woody monocot can be overcome using a simple and effective method. The method thus standardized can be also used for the genetic transformation of other important bamboos. Identification of the factors responsible for the resistance of the somatic embryos to Agrobacterium infection was an absolute requirement for devising a successful method. Necrosis due to polyphenol oxidation, lack of differentiation due to cell wall thickening at wound sites, waxy surfaces of somatic embryos with anti-microbial properties were found to prevent Agrobacterium attachment and infection. Therefore, the somatic embryos were transformed with fresh overnight grown Agrobacterium culture containing 500 mg/l polyvinylpyrrolidone (PVP) and 0.01 % Tween-20 as surfactant followed by co-cultivation on Murashige and Skoog (MS) medium containing the vir gene inducer acetosyringone (100 μM) and 1 mg/l 6-Benzylaminopurine BAP for 2 days. Persistent GUS expression and strong positive signals in PCR, slot blot and Southern hybridization confirmed successful genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

MS medium:

Murashige and Skoog medium

NAA:

α-Napthaleneacetic acid

PCR:

Polymerase chain reaction

PPO:

Polyphenol oxidase

PVP:

Polyvinylpyrrolidone

References

  • Arya S, Satsangi R, Arya ID (2008) Direct regeneration of shoots from immature inflorescences in Dendrocalamus asper (edible bamboo) leading to mass propagation. J Am Bamboo Soc 21:14–20

    Google Scholar 

  • Bag N, Chandra S, Palni LMS, Nandi SK (2000) Micropropagation of Dev-ringal [Thamnocalamus spathiflorus (Trin.) Munro]-a temperate bamboo, and comparison between in vitro propagated plants and seedlings. Plant Sci 156:125–135

    Article  CAS  PubMed  Google Scholar 

  • Balocchi C, Valenzuela S (2004) Introduction to GMOs and Biosafety in Forestry. In: Proceedings of the Forestry Biotechnology Workshop, Global Biotechnological Forum, Concepción, Chile, pp 85–96

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Cri Rev Biochem mol Biol 38:305–350

    Article  CAS  Google Scholar 

  • Bevan MW, Chilton MD (1982) T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16:357–384

    Article  CAS  PubMed  Google Scholar 

  • Binns AN, Thomashow M (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Cassells CA, Curry FR (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tiss Org Cult 64:145–157

    Article  CAS  Google Scholar 

  • Chen Y, Lu L, Deng W, Yang X, McAvoy R, Zhao D, Pei Y, Luo K, Duan H, Smith W, Thammina C, Zheng X, Ellis D, Li Y (2006) In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus. Plant Cell Rep 25:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (1982) Lipid analysis—isolation, separation, identification and structural analysis of lipids, 2nd edn. Pergamon Press, New York

    Google Scholar 

  • Dada Kuta D, Tripathi L (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4:752–757

    Google Scholar 

  • Das DK, Reddy MK, Upadhyaya KC, Sopory SK (2002) An efficient leaf-disk culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • Douglas C, Halperin W, Gordon M, Nester E (1985) Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J Bacteriol 161:764–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Esterbaner H, Schwarzl E, Hayn M (1977) A rapid assay for catechol oxidase and laccase using 2-nitro-5-thiobenzoic acid. Anal Biochem 77:486–494

    Article  Google Scholar 

  • Godbole S, Sood A, Thakur R, Sharma M, Ahuja PS (2002) Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Curr Sci 83:885–889

    CAS  Google Scholar 

  • Goodman RN, Novacky AJ (1994) The hypersensitive reaction in plants to pathogens. A resistant phenomenon. APS PRESS, St. Paul

    Google Scholar 

  • Graves AE, Goldman SL, Banks SW, Graves ACF (1988) Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays. Gladiolus sp. and Triticum aestivum. J Bacteriol 170:2395–2400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hare PD, Van Staden J (1997) The molecular basis of cytokinin action. Plant Growth Regul 23:41–78

    Article  CAS  Google Scholar 

  • Hawes MC, Pueppke SG (1987) Correlation between binding of Agrobacterium tumefaciens by root cap cells and susceptibility to crown gall. Plant Cell Rep 6:287–290

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Huang BL, Chen WL (1989) Tissue culture investigations of bamboo-IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices. Environ Exp Bot 29:307–315

    Article  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) Beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451

    Article  CAS  PubMed  Google Scholar 

  • Ke J, Khan R, Johnson T, Somers DA, Das A (2001) High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Rep 20:150–156

    Article  CAS  Google Scholar 

  • Kim JY, Seo SY, Kim SK, Sung SK, Song KJ, An G, Kim WT (2001) Two polyphenol oxidase are differentially expressed during vegetative and reproductive development and in response to wounding in the Fuji apple. Plant Sci 161:1145–1152

    Article  CAS  Google Scholar 

  • Kumar N, Pandey S, Bhattacharya A, Ahuja PS (2004) Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]? J Biosci 29:309–317

    Article  PubMed  Google Scholar 

  • Lu JJ, Yoshinaga K, Fang W, Tang DQ (2009) Identification of the hybrid bamboo F1 by SSR markers. Sci Silv Sin 45:29–34

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413

    Article  CAS  Google Scholar 

  • Ogita S, Kikuchi N, Nomura T, Kato Y (2011) A practical protocol for particle bombardment-mediated transformation of Phyllostachys bamboo suspension cells. Plant Biotechnol 28:43–50

    Article  Google Scholar 

  • Ozyigit II, Kahraman MV, Ercan O (2007) Relation between explant age, total phenols and regeneration response of tissue cultured cotton (Gossypium hirsutum L.). Afr J Biotechnol 6:3–8

    CAS  Google Scholar 

  • Preethi R, Devanathan VV, Loganathan M (2010) Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Adv Biol Res 4:122–125

    Google Scholar 

  • Pu XA, Goodman RN (1992) Induction of necrosis by Agrobacterium tumefaciens on grape explants. Physiol Mol Plant Pathol 41:245–254

    Article  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Das P (1994) Somatic embryogenesis and in vitro flowering of three species of bamboo. Plant Cell Rep 13:683–686

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Dhawan V (1999) Regeneration and large-scale propagation of bamboo (Dendrocalamus strictus Nees) through somatic embryogenesis. Plant Cell Rep 18:438–444

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  • Strauss SH, Schmitt M, Roger S (2009) Forest scientist views of regulatory obstacles to research and development of transgenic forest biotechnology. J Forest 107:350–357

    Google Scholar 

  • Tewari DN (1992) A monograph on bamboo. International Book Distributors, Dehradun

    Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L (1990) Construction of an intron containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vyroubalova S, Smehilova M, Galuszka P, Ohnoutkova L (2011) Genetic transformation of barley: limiting factors. Biol Plant 55:213–224

    Article  Google Scholar 

  • Woods HS, Phillips GC, Woods JE, Collins GB (1992) Somatic embryogenesis and plant regeneration from zygotic embryo explants in Mexican weeping bamboo, Otatea acuminata aztecorum. Plant Cell Rep 11:257–261

    CAS  PubMed  Google Scholar 

  • Wu FS, Feng TY (1999) Delivery of plasmid DNA into intact plant cells by electroporation of plasmolyzed cells. Plant Cell Rep 18:381–386

    Article  CAS  Google Scholar 

  • Yeh M, Chang WC (1987) Plant regeneration via somatic embryogenesis in mature embryo-derived callus culture of Sinocalamus latiflora (Munro) McClure. Plant Sci 51:93–96

    Article  Google Scholar 

  • Zhang N, Fang W, Shi Y, Liu Q, Yang H, Gui R, Lin X (2010) Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tiss Org Cult 103:325–332

    Article  CAS  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhuo RY, Liu XG (2004) Factors effecting transgenic breeding of Dendrocalamus latiflorus. Acta Agr Univ Jiangxi 26:551–554

    CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Director CSIR-IHBT for extending the requisite facilities for carrying out this work. They also acknowledge the Department of Biotechnology, Government of India and the Council of Scientific and Industrial Research (CSIR), Government of India for funding the work. Priyanka Sood acknowledges the CSIR for her Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Bhattacharya.

Additional information

IHBT Publication number: 0869

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. A

Changes in cellular structures leading to cell wall thickening in treated D. hamiltonii somatic embryos after 0, 96 and 120 h of incubation on MS1 medium; (A–C) immersion, (D–F) pricking and (G–I) vacuum infiltration where (A), (D), (G): represents 0 h; (B), (E), (H): represents 96 h; and (C), (F), (I): represents 120 h. (JPEG 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, P., Bhattacharya, A., Joshi, R. et al. A method to overcome the waxy surface, cell wall thickening and polyphenol induced necrosis at wound sites - the major deterrents to Agrobacterium mediated transformation of bamboo, a woody monocot. J. Plant Biochem. Biotechnol. 23, 69–80 (2014). https://doi.org/10.1007/s13562-013-0189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0189-7

Keywords

Navigation