Skip to main content
Log in

Antioxidant activities of different parts of Gnetum gnemon L.

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Analyses on biological activities of Gnetum gnemon were done to determine the total phenolic and antioxidants of the plant. Four parts of G. gnemon were used in this study, which were leaf, bark, twig, and seeds of the plant. All parts were extracted in methanol, ethanol, hexane, chloroform and hot water using reflux. The total phenolic content of the plant extracts were determined by using Folin-Ciocalteu method. The results demonstrated that the bark from hot water extract showed the highest total phenolic at 10.71 ± 0.01 mg GAE/ FDW, while the lowest was chloroform extract of seed at 2.15 ± 0.01 mg GAE/ FDW. The antioxidant activity of the plant extracts were determined by using DPPH and FRAP assays, respectively. The DPPH results showed that all plant extracts demonstrated weak free radical scavenging activity tested at the final concentration of 300 μg/ml. In contrast, the methanolic twig extract showed strong reducing power activity (FRAP) at 83.55 ± 1.05%, while the hot water seed extract showed the least activity at 41.86 ± 4.22% tested at the final concentration of 300 μg/ml. However, there were no correlation between total phenolics and both antioxidant assays tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FRAP:

Ferric-Reducing Antioxidant Power

DPPH:

2,2-diphenyl-1-picrylhydrazyl

TBARS:

thiobarbituric acid reactive substance

TAE:

tannic acid equivalent

References

  • Ames BN (1983) Dietary carcinogen and anticarcinogens: oxygen radicals and degenerative diseases. Science 221:1256–1264

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigena MK, Heagen TM (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Akaha PA, Ezike AC, Nwafor SV, Okoli CO, Emwerem NM (2003) Evaluation of the anti-asthmatic property Asystasia gangetica leaf extracts. J Ethnopharmacol 89:25–36

    Article  Google Scholar 

  • Amin I, Norazaidah Y, Hainida KIE (2006) Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem 94:47–52

    Article  CAS  Google Scholar 

  • Amorati R, Lucarini M, Mugnaini V, Pedulli GF (2004) Anti-oxidant activity of hydroxystilbene derivatives in homogenous solution. J Org Chem 69:7101–7107

    Article  PubMed  CAS  Google Scholar 

  • Brito P, Almeida LM, Dinis TCP (2002) The interaction of resveratrol with ferrylmyoglobin and peroxynitrite; protection against LDL oxidation. Free Radic Biol Med 36:621–631

    CAS  Google Scholar 

  • Burkhill HM (1994) The useful plants of West Africa. Vol 2, Royal Botanic Gardens Kew, pp 168

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytotheraphy Res 14:323–328

    Article  CAS  Google Scholar 

  • Chung YC, Chang WW, Chao WW (2002) Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agr Food Chem 50:2454–2458

    Article  CAS  Google Scholar 

  • Crozier A, Jensen E, Lean MJ, Morags M (1997) Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. J Chromatogr A 761:315–321

    Article  CAS  Google Scholar 

  • Cuendet M, Hostettmann K, Potterat O (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1152

    Article  CAS  Google Scholar 

  • Gey KF (1990) The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms. Biochem Soc Trans 18:1041–1045

    PubMed  CAS  Google Scholar 

  • Fremont L, Belguendouz L, Delpal S (1999) Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci 64:2511–2521

    Article  PubMed  CAS  Google Scholar 

  • Halici M, Odabasoglu F, Suleyman H, Cakir A, Aslan A, Bayir Y (2005) Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine 12:656–662

    Article  PubMed  CAS  Google Scholar 

  • Harley IM, Craig RE (2008) Species profiles for Pacific Island agroforestry, www.tradiotionaltree.org. Accessed on 2008

  • Harman D (1995) Role of antioxidant nutrient in aging: overview. Age 18:51–62

    Article  CAS  Google Scholar 

  • Huang KS, Li RL, Wang YH, Lin M (2001) Three new stilbene trimers from the lianas of Gnetum hainanense. Planta Med 67:61–64

    Article  PubMed  CAS  Google Scholar 

  • Iliya I, Ali Z, Tanaka T, Iinuma M, Furusawa M, Nakaya K, Murata J, Darnaedi D, Matsuura N, Ubukata M (2003a) Stilbene derivaties from Gnetum gnemon Linn. Phytochemistry 62:601–606

    Article  PubMed  CAS  Google Scholar 

  • Iliya I, Ali Z, Tanaka T, Iinuma M, Furusawa M, Nakaya K, Shirataki Y, Murata J, Darnaedi D, Matsuura N, Ubukata M (2003b) Three new trimeric stilbene from Gnetum gnemon. Chem Pharm Bull 51:85–88

    Article  PubMed  CAS  Google Scholar 

  • Jovanic SV (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851

    Article  Google Scholar 

  • Kato E, Tokunaga Y, Sakan F (2009) Stilbenoids isolated from the seeds of melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food Chem 57:2544–2549

    Article  PubMed  CAS  Google Scholar 

  • Lampe JW, Chang JL (2007) Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol 17:347–353

    Article  PubMed  CAS  Google Scholar 

  • Lim YY, Murtijaya J (2007) Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT 40:1664–1669

    Article  CAS  Google Scholar 

  • Manickam M, Ramanathan JMA, Farboodniay JPN, Chansouria RAB (1997) Anti-hyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60:609–610

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, Rai PK, Rai DK, Rai NK, Rai AK, Bicanic D, Sharma B, Watal G (2010) LIBS-based detection of antioxidant elements in seeds of Emblica officinalis. Food Biophysics 5(3):186–192

    Article  Google Scholar 

  • Odukoya OA, Inya-Agha SI, Segun FI, Sofidiya MO, Hori O (2007) Antioxidant activity of selected Nigerian green leafy vegetables. Am J Food Technol 2:169–175

    CAS  Google Scholar 

  • Oki T, Masuda M, Kobayashi M, Nishiva Y, Furuta S, Suda I, Sato T (2002) Polymeric procyanidins as radical scavenging components in red hulled rice. J Agric Food Chem 50:7524–7529

    Article  PubMed  CAS  Google Scholar 

  • Pandhair V, Sekhon BS (2006) Reactive oxygen species and antioxidants in plants: an overview. J Plant Biochem Biotechnol 15:71–78

    CAS  Google Scholar 

  • Patricio TJ, Guillermo A, Alfonso RV, Ana MG, Juan CM, Eduardo A, Carlos LC (2003) Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 64:463–473

    Article  Google Scholar 

  • Pinelo M, Rubilar M, Jerez M, Sineiro J, Nunez MS (2005) Effects of solvent, temperature and solvent-to-solid on the phenolic content and anti-radical activity of extracts from different components of grape pomace. J Agric Food Chem 53:2111–2117

    Article  PubMed  CAS  Google Scholar 

  • Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2010a) Effect of Curcuma longa freeze dried rhizome powder with milk in STZ induced diabetic rats. Indian J Clin Biochem 25(2):175–181

    Article  Google Scholar 

  • Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2010b) Antioxidant potential of oral feeding of Cynodon dactylon extract on diabetes induced oxidative stress. J Food Biochem 34(1):78–92

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NM, Paganda G (1996) Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:93–956

    Article  Google Scholar 

  • Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin like compounds nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80:1094–1117

    Article  CAS  Google Scholar 

  • Sharma RK, Chatterji S, Rai DK, Mehta S, Rai PK, Singh RK, Watal G, Sharma B (2009) Antioxidant activities and phenolic contents of the aqueous extracts of some Indian medicinal plants. J Med Plants Res 3(11):944–948

    CAS  Google Scholar 

  • Siddhuraju P (2007) Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat. LWT 40:982–990

    Article  CAS  Google Scholar 

  • Siddhuraju P, Mohan PS, Becker K (2002) Studies on the antioxidant activity of Indian Laburnum (Cassia stula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79:61–67

    Article  CAS  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Ecol Viticulture 28:49–55

    CAS  Google Scholar 

  • Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, Forti L, Pagnoni UM, Albini A, Prosperi E, Vannini V (2001) Specific structural determinants are responsible for the antioxidant activity and the cell effects of resveratrol. J Biol Chem 276:22586–22594

    Article  PubMed  CAS  Google Scholar 

  • Thadani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compos Anal 20:323–329

    Article  Google Scholar 

  • Toor RK, Savage GP (2006) Effect of semi-drying on the antioxidant components of tomatoes. Food Chem 94:90–97

    Article  CAS  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Virgili F, Scaccini C, Parker L, Rimbach G (2001) Cardiovascular disease and nutritional phenolics. In: Pokorny J, Yanishlieva N, Gordon M (eds) Antioxidant in food. Woodhead Publishing Ltd, Cambridge, pp 87–99

    Chapter  Google Scholar 

  • Wallace JW, Porter PL, Chopin J (1978) C-Glycosylflavones in Gnetum gnemon. Phytochemistry 17:1809–181

    Article  CAS  Google Scholar 

  • Xu BJ, Chang SKCA (2007) Comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72:159–166

    Article  Google Scholar 

  • Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Graduate School of Studies,UPM for GRF fellowship and The Department of Biochemistry, Faculty Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Malaysia for the laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Shukor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wazir, D., Ahmad, S., Muse, R. et al. Antioxidant activities of different parts of Gnetum gnemon L.. J. Plant Biochem. Biotechnol. 20, 234–240 (2011). https://doi.org/10.1007/s13562-011-0051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-011-0051-8

Keywords

Navigation