Kurokawa I, Nakase K. Recent advances in understanding and managing acne. F1000Res. 2020;9:792.
CAS
Article
Google Scholar
Kurokawa I, Kurokawa I, Danby FW, Ju Q. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18:821–32.
CAS
PubMed
Article
Google Scholar
Peck GL, Olsen TG, Butkus D, et al. Isotretinoin versus placebo in the treatment of cystic acne. A randomized double-blind study. J Am Acad Dermatol. 1982;6(4 Pt 2 Suppl):735–45.
CAS
PubMed
Article
Google Scholar
Dreno B, Gollnick HP, Kang S, et al. Understanding innate immunity and inflammation in acne: implications for management. J Eur Acad Dermatol Venereol. 2015;29(Suppl 4):3–11.
PubMed
Article
Google Scholar
Jansen T, Plewig G. Advances and perspectives in acne therapy. Eur J Med Res. 1997;28(2):321–34.
Google Scholar
Layton AM, Eady EA. Benzoyl peroxide and adapalene fixed combination: a novel agent for acne. Br J Dermatol. 2009;161:971–6.
CAS
PubMed
Article
Google Scholar
Bettoli V, Zauli S, Virgili A. Is hormonal treatment still an option in acne today? Br J Dermatol. 2015;172(Suppl 1):37–46.
CAS
PubMed
Article
Google Scholar
Layton A, Morris C, Cunliffe WJ, Ingham E. Immunohistochemical investigation of evolving inflammation in lesions of acne vulgaris. Exp Dermatol. 1998;7:191–7.
CAS
PubMed
Article
Google Scholar
Jeremy AH, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol. 2003;121:20–7.
CAS
PubMed
Article
Google Scholar
Sugisaki H, Yamanaka K, Kakeda M, et al. Increased interferon-gamma, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J Dermatol Sci. 2009;55:47–52.
CAS
PubMed
Article
Google Scholar
Mouser PE, Baker BS, Seaton ED, Chu AC. Propionibacterium acnes-reactive T helper-1 cells in the skin of patients with acne vulgaris. J Invest Dermatol. 2003;121:1226–8.
CAS
PubMed
Article
Google Scholar
Kim J. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology. 2005;211:193–8.
CAS
PubMed
Article
Google Scholar
Kang Am J, Pathol Kang S, Cho S, et al. Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-κB and activator protein-1 in inflammatory acne lesions in vivo. Am J Pathol. 2005;166:1691–9.
Article
Google Scholar
Kelhälä HL, Palatsi R, Fyhrquist N, et al. IL-17/Th17 pathway is activated in acne lesions. PLoS ONE. 2014;25(9):e105238.
Article
CAS
Google Scholar
Holland DB, Jeremy AH, Roberts SG, Seukeran DC, Layton AM, Cunliffe WJ. Inflammation in acne scarring: a comparison of the responses in lesions from patients prone and not prone to scar. Br J Dermatol. 2004;150:72–81.
CAS
PubMed
Article
Google Scholar
Carlavan B, Carlavan I, Bertino B, Rivier M. Atrophic scar formation in patients with acne involves long-acting immune responses with plasma cells and alteration of sebaceous glands. Br J Dermatol. 2018;179:906–17.
CAS
PubMed
Article
Google Scholar
Burghart Burkhart CG, Burkhart CN. Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug. J Am Acad Dermatol. 2007;57:722–4.
Article
Google Scholar
Knutson DD. Ultrastructural observations in acne vulgaris: the normal sebaceous follicle and acne lesions. J Invest Dermatol. 1974;62:288–307.
CAS
PubMed
Article
Google Scholar
Kurokawa I, Mayer-da-Silva A, Gollnick H, Orfanos CE. Monoclonal antibody labeling for cytokeratins and filaggrin in the human pilosebaceous unit of normal, seborrhoeic and acne skin. J Invest Dermatol. 1988;91:566–71.
CAS
PubMed
Article
Google Scholar
Hughes BR, Morris C, Cunliffe WJ, Leigh IM. Keratin expression in pilosebaceous epithelia in truncal skin of acne patients. Br J Dermatol. 1996;134:247–56.
CAS
PubMed
Article
Google Scholar
Guy R, Green MR, Kealey T. Modeling acne in vitro. J Invest Dermatol. 1996;106:176–82.
CAS
PubMed
Article
Google Scholar
Van Scotte EJ, Maccardle RC. Keratinization of the duct of the sebaceous gland and growth cycle of the hair follicle in the histogenesis of acne in human skin. J Invest Dermatol. 1956;27:405–29.
Article
Google Scholar
Fantao F, von Engelbrechten M, Seilaz C, Sorg O, Saurat JH. Microcomedones in non-lesional acne prone skin: new orientations on comedogenesis and its prevention. J Eur Acad Dermatol Venereol. 2020;34:357–64.
Article
CAS
Google Scholar
Plewig G, et al. Acne pathogenesis. In: Plewig G, Melnik B, Chen WC, editors. Plewig and Kligman’s acne and rosacea. 4th ed. Berlin: Springer; 2019. p. 45–51.
Book
Google Scholar
Picardo M, Eichenfeld L, Tan J. Acne and rosacea. Dermatol Ther (Heidelb). 2017;7(suppl 1):S43-s52.
Article
Google Scholar
Cotterill JA, Cunliffe WJ, Williamson B. Severity of acne and sebum excretion rate. Br J Dermatol. 1971;85:93–4.
CAS
PubMed
Article
Google Scholar
Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J Am Acad Dermatol. 1986;14(2 Pt 1):221–5.
CAS
PubMed
Article
Google Scholar
Ottaviani M, Camera E, Picardo M. Lipid mediators. Mediators Inflamm. 2010;2010:858176. https://doi.org/10.1155/2010/858176.
CAS
Article
PubMed
PubMed Central
Google Scholar
Katsuta Y, Iida T, Inomata S, Denda M. Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J Invest Dermatol. 2005;124:1008–13.
CAS
PubMed
Article
Google Scholar
Melnik B. Acne vulgaris: the metabolic syndrome of the pilosebaceous follicle. Clin Dermatol. 2018;36:29–40.
PubMed
Article
Google Scholar
Jacob CI, Dover JS, Kaminer MS. Acne scarring: a classification system and review of treatment options. J Am Acad Dermatol. 2001;45:109–17.
CAS
PubMed
Article
Google Scholar
Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18:606.
PubMed Central
Article
Google Scholar
Harn HI, Ogawa R, Hsu CK, Hughes MW, Tang MJ, Chuong CM. The tension biology of wound healing. Exp Dermatol. 2019;28:464–71.
PubMed
Article
Google Scholar
Noishiki C, Hayasaka Y, Ogawa R. Sex differences in keloidogenesis: an analysis of 1659 keloid patients in Japan. Dermatol Ther (Heidelb). 2019;9:747–54.
Article
Google Scholar
Ogawa R, Watanabe A, Naing BT, et al. Associations between keloid severity and single-nucleotide polymorphisms: importance of rs8032158 as a biomarker of keloid severity. J Invest Dermatol. 2014;134:2041–3.
CAS
PubMed
Article
Google Scholar
Matsumoto NM, Peng WX, Aoki M, et al. Histological analysis of hyalinised keloidal collagen formation in earlobe keloids over time: collagen hyalinisation starts in the perivascular area. Int Wound J. 2017;14:1088–93.
PubMed
PubMed Central
Article
Google Scholar
Suh DH, Kwon HH. What’s new in the physiopathology of acne? Br J Dermatol. 2015;172(Suppl 1):13–9.
CAS
PubMed
Article
Google Scholar
Yang JH, Yon JY, Moon J, Min S, Kwon HH, Suh DH. Expression of inflammatory and fibrogenetic markers in acne hypertrophic scar formation: focusing on role of TGF-β and IGF-1R. Arch Dermatol Res. 2018;310:665–73.
CAS
PubMed
Article
Google Scholar
Saint-Jean M, Khammari A, Jasson F, Nguyen JM, Dréno B. Different cutaneous innate immunity profiles in acne patients with and without atrophic scars. Eur J Dermatol. 2016;26:68–74.
CAS
PubMed
Article
Google Scholar
Moon J, Yoon JY, Yang JH, Kwon HH, Min S, Suh DH. Atrophic acne scar: a process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor-β1 signalling. Br J Dermatol. 2019;181:1226–37.
CAS
PubMed
Article
Google Scholar
Ramasamy S, Barnard E, Dawson TL Jr, Li H. The role of the skin microbiota in acne pathophysiology. Br J Dermatol. 2019;181:691–9.
CAS
PubMed
Article
Google Scholar
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32(Suppl 2):5–14.
PubMed
Article
Google Scholar
Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66:4422–32.
PubMed
Article
CAS
Google Scholar
Dréno B, Dagnelie MA, Khammari A, Corvec S. The skin microbiome: a new actor in inflammatory acne. Am J Clin Dermatol. 2020;21(Suppl 1):18–24.
PubMed
PubMed Central
Article
Google Scholar
Beylot C, Auffret N, Poli F, et al. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014;28:271–8.
CAS
PubMed
Article
Google Scholar
Burkhart CN, Burkhart CG. Microbiology’s principle of biofilms as a major factor in the pathogenesis of acne vulgaris. Int J Dermatol. 2003;42:925–7.
CAS
PubMed
Article
Google Scholar
Tabara K, Tamura R, Nakamura A, et al. Anti-inflammatory effects of ozenoxacin, a topical quinolone antimicrobial agent. J Antibiot (Tokyo). 2020;73:247–54.
CAS
Article
Google Scholar
Zouboulis CC, Desai N, Emtestam L, et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J Eur Acad Dermatol Venereol. 2015;29:619–44.
CAS
PubMed
Article
Google Scholar
Morita A, Takahashi H, Ozawa K, et al. Twenty-four-week interim analysis from a phase 3 open-label trial of adalimumab in Japanese patients with moderate to severe hidradenitis suppurativa. J Dermatol. 2019;46:745–51.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yiu ZZ, Madan V, Griffiths CE. Acne conglobata and adalimumab: use of tumour necrosis factor-α antagonists in treatment-resistant acne conglobata, and review of the literature. Clin Exp Dermatol. 2015;40:383–6.
CAS
PubMed
Article
Google Scholar
Takahashi T, Yamasaki K, Terui H, et al. Perifolliculitis capitis abscedens et suffodiens treatment with tumor necrosis factor inhibitors: a case report and review of published cases. J Dermatol. 2019;46:802–7.
PubMed
Article
Google Scholar
Kistowska M, Meier B, Proust T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135:110–8.
PubMed
Article
Google Scholar
Agak GW, Qin M, Nobe J, et al. Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol. 2014;134:366–73.
CAS
PubMed
Article
Google Scholar
Thiboutot DM, Layton AM, Eady AE. IL-17: a key player in the P. acnes inflammatory cascade? J Invest Dermatol. 2014;134:307–10.
CAS
PubMed
Article
Google Scholar
Vossen ARJV, van Doorn MBA, van der Zee HH, Prens EP. Apremilast for moderate hidradenitis suppurativa: results of a randomized controlled trial. J Am Acad Dermatol. 2019;80:80–8.
CAS
PubMed
Article
Google Scholar
Maarouf M, Clark AK, Lee DE, Shi VY. Targeted treatments for hidradenitis suppurativa: a review of the current literature and ongoing clinical trials. J Dermatolog Treat. 2018;29:441–9.
PubMed
Article
Google Scholar
Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–84.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tan J, Miklas M. A novel topical retinoid for acne: trifarotene 50 μg/g Cream. Skin Therapy Lett. 2020;25:1–2.
PubMed
Google Scholar
Zuliani T, Khammari A, Chaussy H, Knol AC, Dréno B. Ex vivo demonstration of a synergistic effect of adapalene and benzoyl peroxide on inflammatory acne lesions. Exp Dermatol. 2011;20:850–3.
CAS
PubMed
Article
Google Scholar
Dispenza MC, Wolpert EB, Gilliland KL, et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol. 2012;132:2198–205.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hebert A, Thiboutot D, Stein Gold L, et al. Efficacy and safety of topical clascoterone cream, 1%, for treatment in patients with facial acne: two phase 3 randomized clinical trials. JAMA Dermatol. 2020;156:621–30.
PubMed
Article
Google Scholar
Leyden J, Bergfeld W, Drake L, et al. A systemic type I 5 alpha-reductase inhibitor is ineffective in the treatment of acne vulgaris. J Am Acad Dermatol. 2004;50:443–7.
PubMed
Article
Google Scholar
Letawe C, Boone M, Piérard GE. Digital image analysis of the effect of topically applied linoleic acid on acne microcomedones. Clin Exp Dermatol. 1998;23:56–8.
CAS
PubMed
Article
Google Scholar
Zouboulis CC, Bettoli V. Management of severe acne. Br J Dermatol. 2015;172(Suppl 1):27–33.
PubMed
Article
Google Scholar
Marks DH, Prasad S, De Souza B, Burns LJ, Senna MM. Topical antiandrogen therapies for androgenetic alopecia and acne vulgaris. Am J Clin Dermatol. 2020;21:245–54.
PubMed
Article
Google Scholar
Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res. 2019;311:337–49.
CAS
PubMed
Article
Google Scholar
Goutos I, Ogawa R. Steroid tape: a promising adjunct to scar management. Scars Burn Heal. 2017;3:2059513117690937.
PubMed
PubMed Central
Google Scholar
Ogawa R, Akita S, Akaishi S, et al. Diagnosis and treatment of keloids and hypertrophic scars—Japan Scar Workshop consensus document. Burns Trauma. 2018;2019:7–39.
Google Scholar
Ogawa R, Tosa M, Dohi T, Akaishi S, Kuribayashi S.
Surgical excision and postoperative radiotherapy for keloids. Scars Burn Heal. 2019;5:1–11.
Google Scholar