Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377–400.
CAS
PubMed
Article
Google Scholar
Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci. 2010;123(Pt 4):511–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Oh EC, Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol. 2013;24(1):10–8.
CAS
PubMed
Article
Google Scholar
Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 2010;11(5):331–44.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J Cell Sci. 2015;128(19):3543–9.
CAS
PubMed
Article
Google Scholar
Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. 2007;317(5836):372–6.
CAS
PubMed
Article
Google Scholar
Kuonen F, Huskey NE, Shankar G, et al. Loss of primary cilia drives switching from Hedgehog to Ras/MAPK pathway in resistant basal cell carcinoma. J Investig Dermatol. 2019;139(7):1439–48.
CAS
PubMed
Article
Google Scholar
Guy GP, Thomas CC, Thompson T, et al. Vital signs: melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR Morb Mortal Wkly Rep. 2015;64(21):591–6.
PubMed
PubMed Central
Google Scholar
Gerami P, Busam K, Cochran A, et al. Histomorphologic assessment and interobserver diagnostic reproducibility of atypical spitzoid melanocytic neoplasms with long-term follow-up. Am J Surg Pathol. 2014;38(7):934–40.
PubMed
Article
Google Scholar
Elmore JG, Barnhill RL, Elder DE, et al. Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study. BMJ. 2017;28(357):j2813.
Article
Google Scholar
Kiavash K, Bluth MH, Thompson AD. An update regarding the molecular genetics of melanocytic neoplasms and the current applications of molecular genetic technologies in their diagnosis and treatment. Clin Lab Med. 2018;38(2):385–99.
PubMed
Article
Google Scholar
Lang UE, Yeh I, McCalmont TH. Molecular melanoma diagnosis update: gene fusion, genomic hybridization, and massively parallel short-read sequencing. Clin Lab Med. 2017;37(3):473–84.
PubMed
Article
Google Scholar
Jackson PK. EZH2 inactivates primary cilia to activate Wnt and drive melanoma. Cancer Cell. 2018;34(1):3–5.
CAS
PubMed
Article
Google Scholar
Kim J, Dabiri S, Seeley ES. Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLoS One. 2011;6(11):e27410.
CAS
PubMed
PubMed Central
Article
Google Scholar
Snedecor ER, Sung CC, Moncayo A, et al. Loss of primary cilia in melanoma cells is likely independent of proliferation and cell cycle progression. J Investig Dermatol. 2015;135(5):1456–8.
CAS
PubMed
Article
Google Scholar
Lang UE, Love NR, Cheung C, McCalmont TH, Kim J. Use of the ciliation index to distinguish invasive melanoma from associated conventional melanocytic nevi. Am J Dermatopathol. 2019;42:11–5.
Article
Google Scholar
Love NR, Lang UE, Cheung C, Kim J. Depletion of primary cilium in acral melanoma. J Cutan Pathol. 2019;46(9):665–71.
PubMed
Article
Google Scholar
Garcia G, Raleigh DR, Reiter JF. How the ciliary membrane is organized inside-out to communicate outside-in. Curr Biol. 2018;28(8):R421–34.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gonçalves J, Pelletier L. The ciliary transition zone: finding the pieces and assembling the gate. Mol Cells. 2017;40(4):243–53.
PubMed
PubMed Central
Article
CAS
Google Scholar
Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533–47.
CAS
PubMed
PubMed Central
Article
Google Scholar
van Leeuwenhoek A. Concerning little animals observed in rain-, well-, sea- and snow-water; as also in water wherein pepper had lain infused. Philos Trans R Soc Lond. 1677;12:821–31.
Google Scholar
Dobell C. Antony van Leeuwenhoek and his “little animals”. New York: Harcourt, Brace and Co; 1932.
Google Scholar
Kowalevsky A. Entwickelungsgeschichte des Amphioxus lanceolatus. Memoires Acad Imp Sci St-Petersbourg VII. 1867;11:1–17.
Google Scholar
Langerhans P. Zur Anatomie des Amphioxus. Arch Mikrokopische Anat. 1876;12:290–348.
Article
Google Scholar
Zimmermann K. Beitrage zur Kenntniss einiger Drusen und Epithelien. Arch Mikrosk Anat. 1898;52:552–706.
Article
Google Scholar
Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968;3(2):207–30.
CAS
PubMed
Google Scholar
Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci. 1993;90(12):5519–23.
CAS
PubMed
Article
PubMed Central
Google Scholar
Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151(3):709–18.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bloodgood RA. From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol. 2009;94:3–52.
CAS
PubMed
Google Scholar
Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.
CAS
PubMed
PubMed Central
Article
Google Scholar
Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Investig. 2019;129(2):465–75.
PubMed
Article
PubMed Central
Google Scholar
Higgins M, Obaidi I, McMorrow T. Primary cilia and their role in cancer. Oncol Lett. 2019;17(3):3041–7.
CAS
PubMed
PubMed Central
Google Scholar
May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012;1(1):7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Grisanti L, Revenkova E, Gordon RE, Iomini C. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development. 2016;143(12):2160–71.
CAS
PubMed
PubMed Central
Article
Google Scholar
Asgari MM, Moffet HH, Ray GT, Quesenberry CP. Trends in basal cell carcinoma incidence and identification of high-risk subgroups, 1998–2012. JAMA Dermatol. 2015;151(9):976–81.
PubMed
Article
Google Scholar
Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406.
CAS
PubMed
Article
Google Scholar
Gorlin RJ, Goltz RW. Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med. 1960;5(262):908–12.
Article
Google Scholar
Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85(6):841–51.
CAS
PubMed
Article
Google Scholar
Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272(5268):1668–71.
CAS
PubMed
Article
Google Scholar
Herzberg JJ, Wiskemann A. The fifth phakomatosis. Basal cell nevus with hereditary malformation and medulloblastoma. Dermatologica. 1963;126:106–23.
CAS
PubMed
Article
Google Scholar
Schweisguth O, Gerard-Marchant R, Lemerle J. Basal cell nevus syndrome. Association with congenital rhabdomyosarcoma. Arch Fr Pediatr. 1968;25(9):1083–93.
CAS
PubMed
Google Scholar
McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol. 2003;53:1–114.
CAS
PubMed
Article
Google Scholar
Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996;383(6599):407–13.
CAS
PubMed
Article
Google Scholar
Echelard Y, Epstein DJ, St-Jacques B, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993;75(7):1417–30.
CAS
PubMed
Article
Google Scholar
Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ. Biochemical evidence that patched is the Hedgehog receptor. Nature. 1996;384(6605):176–9.
CAS
PubMed
Article
Google Scholar
Smyth I, Narang MA, Evans T, et al. Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene in basal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet. 1999;8(2):291–7.
CAS
PubMed
Article
Google Scholar
Stone DM, Hynes M, Armanini M, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;384(6605):129–34.
CAS
PubMed
Article
Google Scholar
Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF. Vertebrate smoothened functions at the primary cilium. Nature. 2005;437(7061):1018–21.
CAS
PubMed
Article
Google Scholar
Huang P, Zheng S, Wierbowski BM, et al. Structural basis of smoothened activation in Hedgehog signaling. Cell. 2018;175(1):295–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet. 2011;12(6):393–406.
CAS
PubMed
Article
Google Scholar
Kim J, Kato M, Beachy PA. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci USA. 2009;106(51):21666–71.
CAS
PubMed
Article
PubMed Central
Google Scholar
Kogerman P, Grimm T, Kogerman L, et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol. 1999;1(5):312–9.
CAS
PubMed
Article
Google Scholar
Stone DM, Murone M, Luoh S, et al. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci. 1999;112(Pt 23):4437–48.
CAS
PubMed
Google Scholar
Svärd J, Heby-Henricson K, Henricson KH, et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell. 2006;10(2):187–97.
PubMed
Article
CAS
Google Scholar
St-Jacques B, Dassule HR, Karavanova I, et al. Sonic hedgehog signaling is essential for hair development. Curr Biol. 1998;8(19):1058–68.
CAS
PubMed
Article
Google Scholar
Chiang C, Swan RZ, Grachtchouk M, et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol. 1999;205(1):1–9.
CAS
PubMed
Article
Google Scholar
Oro AE, Higgins K. Hair cycle regulation of Hedgehog signal reception. Dev Biol. 2003;255(2):238–48.
CAS
PubMed
Article
Google Scholar
Sato N, Leopold PL, Crystal RG. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Investig. 1999;104(7):855–64.
CAS
PubMed
Article
PubMed Central
Google Scholar
Wang LC, Liu ZY, Gambardella L, et al. Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J Investig Dermatol. 2000;114(5):901–8.
CAS
PubMed
Article
Google Scholar
Wong SY, Seol AD, So P-L, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med. 2009;15(9):1055–61.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang N, Leung EL-H, et al. INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene. 2017;36(35):4997–5005.
CAS
PubMed
PubMed Central
Article
Google Scholar
Peterson SC, Eberl M, Vagnozzi AN, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16(4):400–12.
CAS
PubMed
PubMed Central
Article
Google Scholar
Koelblinger P, Lang R. New developments in the treatment of basal cell carcinoma: update on current and emerging treatment options with a focus on vismodegib. OncoTargets Ther. 2018;23(11):8327–40.
Article
Google Scholar
Jacobsen AA, Aldahan AS, Hughes OB, Shah VV, Strasswimmer J. Hedgehog pathway inhibitor therapy for locally advanced and metastatic basal cell carcinoma: a systematic review and pooled analysis of interventional studies. JAMA Dermatol. 2016;152(7):816–24.
PubMed
Article
Google Scholar
Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tang JY, Mackay-Wiggan JM, Aszterbaum M, et al. Inhibiting the Hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med. 2012;366(23):2180–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the Hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361(12):1164–72.
Article
Google Scholar
Raleigh DR, Algazi A, Arron ST, Neuhaus IM, Yom SS. Induction Hedgehog pathway inhibition followed by combined-modality radiotherapy for basal cell carcinoma. Br J Dermatol. 2015;173(2):544–6.
CAS
PubMed
Article
Google Scholar
Atwood SX, Sarin KY, Whitson RJ, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sharpe HJ, Pau G, Dijkgraaf GJ, et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):327–41.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lam CW, Xie J, To KF, et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene. 1999;18(3):833–6.
CAS
PubMed
Article
Google Scholar
Xie J, Murone M, Luoh SM, et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2.
CAS
PubMed
Article
Google Scholar
Buonamici S, Williams J, Morrissey M, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51ra70.
PubMed
PubMed Central
Article
CAS
Google Scholar
Dijkgraaf GJP, Alicke B, Weinmann L, et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 2011;71(2):435–44.
CAS
PubMed
Article
Google Scholar
Widmer DS, Cheng PF, Eichhoff OM, et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 2012;25(3):343–53.
CAS
PubMed
Article
Google Scholar
Verfaillie A, Imrichova H, Atak ZK, et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun. 2015;9(6):6683.
Article
CAS
Google Scholar
Hoek KS, Schlegel NC, Brafford P, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006;19(4):290–302.
CAS
PubMed
Article
Google Scholar
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer. 2019;19(7):377–91.
CAS
PubMed
Article
Google Scholar
Shain AH, Joseph NM, Yu R, et al. Genomic and transcriptomic analysis reveals incremental disruption of key signaling pathways during melanoma evolution. Cancer Cell. 2018;34(1):45–55.e4.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345–58.
CAS
PubMed
Article
Google Scholar
Conway K, Edmiston SN, Parker JS, et al. Identification of a robust methylation classifier for cutaneous melanoma diagnosis. J Investig Dermatol. 2019;139(6):1349–61.
CAS
PubMed
Article
Google Scholar
Torres R, Lang UE, Hejna M, et al. MicroRNA ratios distinguish melanomas from nevi. J Investig Dermatol. 2019;140:164–73.e7.
PubMed
Article
CAS
Google Scholar
Ferris LK, Farberg AS, Middlebrook B, et al. Identification of high-risk cutaneous melanoma tumors is improved when combining the online American Joint Committee on Cancer Individualized Melanoma Patient Outcome Prediction Tool with a 31-gene expression profile-based classification. J Am Acad Dermatol. 2017;76(5):818–825.e3.
PubMed
Article
Google Scholar
Sengupta D, Tackett AJ. Proteomic findings in melanoma. J Proteom Bioinform. 2016;9(4):e29.
Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol. 2018;51:80–8.
CAS
PubMed
Article
Google Scholar
Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–50.
Zingg D, Debbache J, Peña-Hernández R, et al. EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell. 2018;34(1):69–84.e14.
CAS
PubMed
Article
Google Scholar
Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128–34.
CAS
PubMed
PubMed Central
Article
Google Scholar
Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.
CAS
PubMed
Article
Google Scholar
Lazova R, Seeley EH. Proteomic mass spectrometry imaging for skin cancer diagnosis. Dermatol Clin. 2017;35(4):513–9.
CAS
PubMed
Article
Google Scholar
Shain AH, Yeh I, Kovalyshyn I, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.
PubMed
Article
CAS
Google Scholar
Zeng H, Jorapur A, Shain AH, et al. Bi-allelic loss of CDKN2A initiates melanoma invasion via BRN2 activation. Cancer Cell. 2018;34(1):56–68.e9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Koh SS, Cassarino DS. Immunohistochemical expression of p16 in melanocytic lesions: an updated review and meta-analysis. Arch Pathol Lab Med. 2018;142(7):815–28.
CAS
PubMed
Article
Google Scholar
Muller OF. Animalcula infusoria; fluvia tilia et marina, que detexit, systematice descripsit et ad vivum delineari curavit. Molleri, Havniae; 1786.
Purkinje JE, Valentin GG. Entdeckung continuerlicher durch Wimperhaare erzeugter Flimmerbewegungen. Arch Anat Physiol Wiss Med. 1834;1:391–400.
Google Scholar
DuJardin F. Histoire Naturelle des Zoophytes (Infusoires). Paris: Roret; 1841.
Ecker A. Flimmerbewegung im Gehörorgan von Petromyzon marinus. Arch Anat Physiol Wiss Med Müller’s Arch. 1844;1:520–521.
Google Scholar
Kolliker A. Manual of human microscopical anatomy (translation by George Busk of Mikroskopische Anatomie). Philadelphia: Lippincott, Grambo and Company; 1854.
Google Scholar
Flemming W. Studien uber die Entwicklungsgeschichte der Najaden. Akad Wiss Wien. 1875;71:81–147.
Google Scholar
Van Beneden E. Contribution a l’histoire de la vesiculaire germinative et du premier noyau embryonnaire. Bull Acad R Belg. 1876;2(42):35–97.
Google Scholar
Henneguy LF. Sur les rapports des cils vibratiles avec les centrosomes. Arch Anat Microsc. 1898;1:481–96.
Google Scholar
von Lenhossek M. Untersuchungen uber Spermatogenese. Arch Mikrosk Anat. 1898;51:215–318.
Article
Google Scholar
von Lenhossek M. Ueber Flimmerzellen. Verh Anat Ges. 1898;12:106–28.
Google Scholar
Alverdes K. Zentralgeisselapparat der Epithelzellen im Rete testis des Menschen. Z Mikro Anat Frschg. 1927;11:172–80.
Google Scholar
Sjostrand FS. The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J Cell Comp Physiol. 1953;42:45–70.
CAS
PubMed
Article
Google Scholar
deHarven E, Bernhard W. Etude au microscope de l’ultrastructure du centriole chez les vertebres. Z Zellforsch Mikrosk Anat. 1956;45:378–98.
Article
Google Scholar
Bernhard W, deHarven E. L’ultrastructure du centriole et d’autres elements de l’appareil achromatique. In: Bargmann W, Peters D, Wolpers C, editors. Proceedings of the 4th international congress electron microscopy, vol. 2. Berlin: Springer; 1960. p. 217–27.
Google Scholar
Barnes BG. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res. 1961;5:453–67.
CAS
PubMed
Article
Google Scholar
Wilson RB, McWhorter CA. Isolated flagella in human skin. Election microscopic observations. Lab Invest. 1963;12:242–9.
CAS
PubMed
Google Scholar
Archer FL, Wheatley DN. Cilia in cell-cultured fibroblasts II. Incidence in mitotic and post-mitotic BHK 21-C13 fibroblasts. J Anat. 1971;109(Pt 2):277–92.
CAS
PubMed
PubMed Central
Google Scholar
Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317–9.
CAS
PubMed
Article
Google Scholar
Lehman JM, Laag E, Michaud EJ, Yoder BK. An essential role for dermal primary cilia in hair follicle morphogenesis. J Investig Dermatol. 2009;129(2):438–48.
CAS
PubMed
Article
Google Scholar
Ezratty E, Stokes N, Chai S, Shah A, Williams S, Fuchs E. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell. 2011;145(7):1129–41.
CAS
PubMed
PubMed Central
Article
Google Scholar