Skip to main content
Log in

Oxymétrie cérébrale

Brain oxymetry

  • Enseignement Supérieur en Réanimation
  • Published:
Réanimation

Résumé

Le monitorage régional de l’oxymétrie cérébrale fait appel à deux technologies. La spectroscopie dans le proche infrarouge (NIRS), qui est non invasive, permet théoriquement de mesurer la saturation en oxygène de l’hémoglobine du lit vasculaire cérébral (ScO2). La seconde est la mesure invasive par électrode polarographique de Clarck de la pression interstitielle du tissu cérébral (PtiO2). Malgré des progrès technologiques, la NIRS ne permet pas de mesurer exclusivement la saturation du sang cérébral et son signal est fortement affecté par la saturation du sang extracrânien. La mesure invasive de la PtiO2 est fiable et a permis d’identifier de fréquents épisodes d’hypoxie tissulaire cérébrale non liée aux déterminants connus du transport cérébral de l’O2. L’intégration de la mesure de la PtiO2 au monitorage multimodal invasif a ainsi permis d’identifier une nouvelle entité pathologique impliquée dans l’ischémie cérébrale secondaire.

Abstract

Two main technologies have been proposed to monitor cerebral oxymetry. Near infrared spectroscopy (NIRS) is a non invasive device theoretically dedicated to measure cerebral blood oxygen saturation (ScO2). The second device allows the invasive measurement of interstitial O2 partial pressure in brain tissue (PtiO2). Despite improvements in technologies, NIRS does not allow to measure exclusively cerebral blood saturation since NIRS signal is strongly affected by extracranial tissue blood saturation. In contrast, the invasive measurement of PtiO2 is reliable and allowed to identify frequent episodic cerebral hypoxic injuries unrelated to known determinants of cerebral O2 transport. Interestingly, integration of PtiO2 measurement in multimodal monitoring allowed the identification of a new pathologic entity involved in secondary cerebral ischemic insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935

    Article  PubMed  Google Scholar 

  2. Sato Y, Oishi M, Fukuda M, et al (2012) Hemodynamic and electrophysiological connectivity in the language system: Simultaneous near-infrared spectroscopy and electrocorticography recordings during cortical stimulation. Brain Lang 123:64–67

    Article  PubMed  Google Scholar 

  3. Sato Y, Uzuka T, Aoki H, et al (2012) Near infrared spectroscopic study and the Wada test for presurgical evaluation of expressive and receptive language functions in glioma patients:With a case report of dissociated language functions. Neuroscience Letters 510:104–109

    Article  PubMed  CAS  Google Scholar 

  4. McIntosh MA, Shahani U, Boulton RG, et al (2010) Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS). Invest Ophthalmol Vis Sci 51:4856–4860

    Article  PubMed  Google Scholar 

  5. Haeussinger FB, Heinzel S, Hahn T, et al (2011) Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PLoS One 6:e26377

    Article  PubMed  CAS  Google Scholar 

  6. Booth EA, Dukatz C, Ausman J, et al (2010) Cerebral and somatic venous oximetry in adults and infants. Surg Neurol Int 1:75

    Article  PubMed  Google Scholar 

  7. Abdul-Khaliq H, Troitzsch D, Berger F, et al (2000) Comparison of regional transcranial oimetry with NIRS and jugular venous bulb oxygen saturation. Biomed Tech (Berl) 45:328–332

    Article  CAS  Google Scholar 

  8. Nagdyman N, Ewert P, Peters B, et al (2008) Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr Anaesth 18:160–166

    PubMed  Google Scholar 

  9. Kim MB, Ward DS, Cartwright CR, et al (2000) Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput 16:191–199

    Article  PubMed  CAS  Google Scholar 

  10. Al-Rawi PG, Kirkpatrick PJ (2006) Tissue oxygen index: thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke 37:2720–2725

    Article  PubMed  Google Scholar 

  11. Stoneham MD, Lodi O, de Beer TC, et al (2008) Increased oxygen administration improves cerebral oxygenation in patients undergoing awake carotid surgery. Anesth Analg 107:1670–1675

    Article  PubMed  CAS  Google Scholar 

  12. Rigamonti A, Scandroglio M, Minicucci F, et al (2005) A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy. J Clin Anesth 17:426–430

    Article  PubMed  Google Scholar 

  13. Hirofumi O, Otone E, Hiroshi I, et al (2003) The effectiveness of regional cerebral oxygen saturation monitoring using nearinfrared spectroscopy in carotid endarterectomy. J Clin Neurosci 10:79–83

    Article  PubMed  Google Scholar 

  14. Samra SK, Dy EA, Welch K, et al (2000) Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology 93:964–970

    Article  PubMed  CAS  Google Scholar 

  15. Mille T, Tachimiri ME, Klersy C, et al (2004) Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg 27:646–650

    Article  PubMed  CAS  Google Scholar 

  16. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116:834–840

    Article  PubMed  CAS  Google Scholar 

  17. Kurth CD, Levy WJ, McCann J (2002) Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab 22:335–341

    Article  PubMed  CAS  Google Scholar 

  18. Siepe M, Pfeiffer T, Gieringer A, et al (2011) Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur J Cardiothorac Surg 40:200–207

    Article  PubMed  Google Scholar 

  19. Heringlake M, Garbers C, Kabler JH, et al (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114:58–69

    Article  PubMed  Google Scholar 

  20. Baikoussis NG, Karanikolas M, Siminelakis S, et al (2010) Baseline cerebral oximetry values in cardiac and vascular surgery patients: a prospective observational study. J Cardiothorac Surg 5:41

    Article  PubMed  Google Scholar 

  21. Hemmerling TM, Bluteau MC, Kazan R, et al (2008) Significant decrease of cerebral oxygen saturation during single-lung ventilation measured using absolute oximetry. Br J Anaesth 101:870–875

    Article  PubMed  CAS  Google Scholar 

  22. Brassard P, Seifert T, Secher NH (2009) Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects? Br J Anaesth 102:800–805

    Article  PubMed  CAS  Google Scholar 

  23. Ter Minassian A, Poirier N, Pierrot M, et al (1999) Correlation between cerebral oxygen saturation measured by near-infrared spectroscopy and jugular oxygen saturation in patients with severe closed head injury. Anesthesiology 91:985–990

    Article  PubMed  Google Scholar 

  24. Jeong H, Jeong S, Lim HJ, et al (2012) Cerebral oxygen saturation measured by near-infrared spectroscopy and jugular venous bulb oxygen saturation during arthroscopic shoulder surgery in beach chair position under sevoflurane-nitrous oxide or propofol-remifentanil anesthesia. Anesthesiology 116:1047–1056

    Article  PubMed  CAS  Google Scholar 

  25. Pennings FA, Schuurman PR, van den MP, et al (2008) Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma 25:1173–1177

    Article  PubMed  Google Scholar 

  26. Menon DK, Coles JP, Gupta AK, et al (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32:1384–1390

    Article  PubMed  Google Scholar 

  27. Chang JJ, Youn TS, Benson D, et al (2009) Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med 37:283–290

    Article  PubMed  CAS  Google Scholar 

  28. Martini RP, Deem S, Yanez ND, et al (2009) Management guided by brain tissue oxygen monitoring and outcome following severe traumatic brain injury. J Neurosurg 111:644–649

    Article  PubMed  Google Scholar 

  29. Spiotta AM, Stiefel MF, Gracias VH, et al (2010) Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg 113:571–580

    Article  PubMed  Google Scholar 

  30. Figaji AA, Zwane E, Graham FA, et al (2010) The effect of increased inspired fraction of oxygen on brain tissue oxygen tension in children with severe traumatic brain injury. Neurocrit Care 12:430–437

    Article  PubMed  Google Scholar 

  31. Swanson EW, Mascitelli J, Stiefel M, et al (2010) Patient transport and brain oxygen in comatose patients. Neurosurgery 66:925–931

    Article  PubMed  Google Scholar 

  32. Rosenthal G, Hemphill JC, Sorani M, et al (2008) The role of lung function in brain tissue oxygenation following traumatic brain injury. J Neurosurg 108:59–65

    Article  PubMed  Google Scholar 

  33. Budohoski KP, Zweifel C, Kasprowicz M, et al (2012) What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br J Anaesth 108:89–99

    Article  PubMed  CAS  Google Scholar 

  34. Spiotta AM, Stiefel MF, Heuer GG, et al (2008) Brain hyperthermia after traumatic brain injury does not reduce brain oxygen. Neurosurgery 62:864–872

    Article  PubMed  Google Scholar 

  35. Smith ML, Counelis GJ, Maloney-Wilensky E, et al (2007) Brain tissue oxygen tension in clinical brain death: a case series. Neurol Res 29:755–759

    Article  PubMed  CAS  Google Scholar 

  36. Longhi L, Pagan F, Valeriani V, et al (2007) Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med 33:2136–2142

    Article  PubMed  Google Scholar 

  37. Oddo M, Levine JM, Mackenzie L, et al (2011) Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery 69:1037–1045

    PubMed  Google Scholar 

  38. Stein DM, Lindell AL, Murdock KR, et al (2012) Use of serum biomarkers to predict cerebral hypoxia after severe traumatic brain injury. J Neurotrauma 29:1140–1149

    Article  PubMed  Google Scholar 

  39. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    PubMed  CAS  Google Scholar 

  40. Mayevsky A, Weiss HR (1991) Cerebral blood flow and oxygen consumption in cortical spreading depression. J Cereb Blood Flow Metab 11:829–836

    Article  PubMed  CAS  Google Scholar 

  41. Mies G, Paschen W (1984) Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex. Exp Neurol 84:249–258

    Article  PubMed  CAS  Google Scholar 

  42. Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449:395–398

    Article  PubMed  CAS  Google Scholar 

  43. Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4:709–711

    Article  PubMed  CAS  Google Scholar 

  44. Mies G, Kohno K, Hossmann KA (1994) Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 14:802–807

    Article  PubMed  CAS  Google Scholar 

  45. Strong AJ, Fabricius M, Boutelle MG, et al (2002) Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33:2738–2743

    Article  PubMed  Google Scholar 

  46. Bosche B, Graf R, Ernestus RI, et al (2010) Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol 67:607–617

    Article  PubMed  Google Scholar 

  47. Dohmen C, Sakowitz OW, Fabricius M, et al (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol 63:720–728

    Article  PubMed  Google Scholar 

  48. Dreier JP, Major S, Manning A, et al (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132:1866–1881

    Article  PubMed  Google Scholar 

  49. Dreier JP, Woitzik J, Fabricius M, et al (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237

    Article  PubMed  Google Scholar 

  50. Fabricius M, Fuhr S, Bhatia R, et al (2006) Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129:778–790

    Article  PubMed  Google Scholar 

  51. Hartings JA, Bullock MR, Okonkwo DO, et al (2011) Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol 10:1058–1064

    Article  PubMed  Google Scholar 

  52. Hartings JA, Strong AJ, Fabricius M, et al (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26:1857–1866

    Article  PubMed  Google Scholar 

  53. Lauritzen M, Dreier JP, Fabricius M, et al (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35

    Article  PubMed  Google Scholar 

  54. Nakamura H, Strong AJ, Dohmen C, et al (2010) Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain 133:1994–2006

    Article  PubMed  Google Scholar 

  55. Strong AJ, Macdonald RL (2012) Cortical spreading ischemia in the absence of proximal vasospasm after aneurysmal subarachnoid hemorrhage: evidence for a dual mechanism of delayed cerebral ischemia. J Cereb Blood Flow Metab 32:201–202

    Article  PubMed  Google Scholar 

  56. Hertle DN, Dreier JP, Woitzik J, et al (2012) Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135:2390–2398

    Article  PubMed  Google Scholar 

  57. Sakowitz OW, Kiening KL, Krajewski KL, et al (2009) Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke 40:e519–e522

    Article  PubMed  CAS  Google Scholar 

  58. Drenckhahn C, Winkler MK, Major S, et al (2012) Correlates of spreading depolarization in human scalp electroencephalography. Brain 135:853–868

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ter Minassian.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2013 dans la session: Monitorage des patients cérébrolésés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ter Minassian, A., Azau, A. & Duc, F. Oxymétrie cérébrale. Réanimation 22 (Suppl 2), 403–408 (2013). https://doi.org/10.1007/s13546-012-0540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-012-0540-3

Mots clés

Keywords

Navigation