Skip to main content
Log in

Physiopathologie des lésions cérébrales précoces et retardées dans l’hémorragie sous-arachnoïdienne : avancées récentes

Pathophysiology of acute and delayed brain injury after subarachnoid hemorrhage: an update

  • Enseignement Supérieur en Réanimation
  • Médecin
  • Published:
Réanimation

Résumé

L’hémorragie sous-arachnoïdienne (HSA) par rupture anévrismale est toujours compliquée actuellement d’une mortalité et d’une morbidité importante, qui peuvent être attribuées en grande partie à la survenue de lésions ischémiques précoces ou retardées. Le vasospasme des artères cérébrales est un des facteurs associés aux lésions ischémiques, mais il apparaît avec un certain retard. Les travaux expérimentaux récents s’intéressent aux lésions cérébrales précoces survenant après l’HSA. Plusieurs mécanismes étiologiques sont proposés : facteurs mécaniques, atteinte de la microcirculation et vasospasme non détectable angiographiquement, perturbation de l’homéostasie ionique, induction de l’apoptose, stress oxydatif… La quantité de sang présente dans les espaces sous-arachnoïdiens déclenche par ailleurs une riposte inflammatoire qui fait intervenir des éléments cellulaires, mais également des facteurs moléculaires (cytokines, endothéline, oxyde nitrique [NO]…). Elle est probablement largement responsable des lésions ischémiques retardées dans un contexte de vasospasme. Une meilleure connaissance des mécanismes physiopathologiques impliqués à la phase aiguë devrait permettre de proposer de nouvelles cibles thérapeutiques.

Abstract

Aneurysmal subarachnoid hemorrhage (SAH) is still further complicated by a high mortality and morbidity rate related to early or delayed ischemic brain injury. Cerebral vasospasm is one of the factors associated with ischemic injury, but it usually appears with some delay. Recent experimental data are focusing on early brain injury after SAH. Several etiological factors have been suggested: changes in intracranial pressure and cerebral blood flow, microvascular vasospasm and platelet aggregation, cortical spreading depolarization, induction of apoptosis, oxidative stress, etc. The amount of blood present in the subarachnoid space causes an intense inflammatory response that involves both cellular and molecular factors (cytokines, endothelin, nitric oxide) and triggers vasospasm and delayed ischemic neurologic deficit. A better understanding of the pathophysiology of the early brain injury after SAH can lead to a more targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Cahill J, Calvert JW, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353

    Article  PubMed  CAS  Google Scholar 

  2. Kusuka G, IIshikawa M, Nanda A, et al (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925

    Article  Google Scholar 

  3. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28:399–414

    Article  PubMed  CAS  Google Scholar 

  4. Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43:27–40

    Article  PubMed  CAS  Google Scholar 

  5. Juvela S, Siironen J (2011) Early cerebral infarction as a risk factor for poor outcome after aneurismal subarachnoid hemorrhage. Eur J Neurol doi: 10.1111/j.1468-1331.2011.03523.x

  6. Alaraj A, Charbel FT, Amin-Hanjani S (2009) Perioperative measures for treatment and prevention of cerebral vasospasm following subarachnoid hemorrhage. Neurol Res 31:651–659

    Article  PubMed  Google Scholar 

  7. Schmidt JM, Rincon F, Fernandez A, et al (2007) Cerebral infarction associated with subarachnoid hemorrhage. Neurocrit Care 7:10–17

    Article  PubMed  Google Scholar 

  8. Shimoda M, Hoshikawa K, Shiramizu H, et al (2010) Early infarction detected by diffusion-weighted imaging in patients with subarachnoid hemorrhage. Acta Neurochir 152:1197–1205

    Article  PubMed  Google Scholar 

  9. Nornes H, Magnaes B (1972) IIntracranial pressure in patients with ruptured saccular aneurysm. J Neurosurg 36:537–547

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz AY, Masago A, Sehba FA, et al (2000) Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods 96:161–167

    Article  PubMed  CAS  Google Scholar 

  11. Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Hayashi T, Suzuki A, Hatazawa J, et al (2000) Cerebral circulation and metabolism in the acute stage of subarachnoid hemorrhage. J Neurosurg 93:1014–1018

    Article  PubMed  CAS  Google Scholar 

  13. Sehba FA, Dingh WH, Chereshnev II, et al (1999) Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 30:1955–1961

    Article  PubMed  CAS  Google Scholar 

  14. Grosset DG, Straiton J, McDonald II, et al (1993) Angiographic and Doppler diagnosis of cerebral artery vasospasm following subarachnoid hemorrhage. Br J Neurosurg 7:291–298

    Article  PubMed  CAS  Google Scholar 

  15. Uhl E, Lehmberg J, Steiger HJ, et al (2003) IIntraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery 52:1307–1315

    Article  PubMed  Google Scholar 

  16. Hatake K, Wakabayashi II, Kakishita E, et al (1992) IImpairment of endothelium-dependent relaxation in human basilar artery after subarachnoid hemorrhage. Stroke 23:1111–1116

    Article  PubMed  CAS  Google Scholar 

  17. Sehba FA, Mostafa G, Friederich V Jr, et al (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094–1110

    Article  PubMed  Google Scholar 

  18. Keep RF, Andjelkovic AV, Stamatovic SM, et al (2005) IIschemia-induced endothelial cell dysfunction. Acta Neurochir Suppl 95:399–402

    Article  PubMed  CAS  Google Scholar 

  19. Park S, Yamaguchi M, Zhou C, et al (2004) Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 35:2412–2417

    Article  PubMed  CAS  Google Scholar 

  20. Yatsushige H, Ostrowski RP, Tsubokawa T, et al (2007) Role of c-Jun N-terminal kinase activity in early brain injury after subarachnoid hemorrhage. J Neurosci Res 85:1436–1448

    Article  PubMed  CAS  Google Scholar 

  21. Dreier JP, Major S, Manning A, et al (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurismal subarachnoid hemorrhage. Brain 132:1866–1881

    Article  PubMed  Google Scholar 

  22. Gwag BJ, Canzoniero LM, Sensi SL, et al (1999) Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons. Neuroscience 90:1339–1348

    Article  PubMed  CAS  Google Scholar 

  23. Dreier JP, Windmuller O, Petzold G, et al (2002) IIschemia triggered by red blood cells products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery 51:1457–1465

    PubMed  Google Scholar 

  24. Petzold GC, Einhaupl KM, Dirnagl U, et al (2003) IIschemia triggered by spreading neuronal activation is induced by endothelin-1 and haemoglobin in the subarachnoid space. Ann Neurol 54:591–598

    Article  PubMed  CAS  Google Scholar 

  25. Suarez JI, Participants in the International Multidisciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage (2011) Magnesium sulphate administration in subarachnoid hemorrhage. Neurocrit Care 15:302–307

    Article  PubMed  CAS  Google Scholar 

  26. Rother RP, Bell L, Hillmen P, et al (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma haemoglobin: a novel mechanism of human disease. JAMA 293:1653–1662

    Article  PubMed  CAS  Google Scholar 

  27. Edwards DH, Griffith TM, Ryley HC, et al (1986) Haptoglobinhaemoglobin complex in human plasma inhibits endothelium dependent relaxation: evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc Res 20:549–556

    Article  PubMed  CAS  Google Scholar 

  28. Saeed SA, Ahmad N, Ahmed S (2007) Dual inhibition of cyclooxygenase and lipoxygenase by human haptoglobin: its polymorphism and relation to haemoglobin binding. Biochem Biophys Res Commun 353:915–920

    Article  PubMed  CAS  Google Scholar 

  29. Marzatico F, Gaetani P, Cafe C, et al (1993) Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand 87:62–66

    Article  PubMed  CAS  Google Scholar 

  30. Chaichana KL, Pradilla G, Huang J, et al (2010) Role of inflammation (leukocyte-endothelial cells interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg 73:22–41

    Article  PubMed  Google Scholar 

  31. Muroi C, Mink S, Seule M, et al (2011) Monitoring of the inflammatory response after aneurysmal subarachnoid haemorrhage in the clinical setting: review of literature and report of preliminary clinical experience. Acta Neurochir Suppl 110:191–196

    PubMed  CAS  Google Scholar 

  32. Dumont AS, Dumont RJ, Chow MM, et al (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53:123–133

    Article  PubMed  Google Scholar 

  33. Kubo Y, Ogasawara K, Kakino S, et al (2008) Serum inflammatory adhesion molecules and high-sensitivity C reactive protein correlates with delayed ischemic neurologic deficits after subarachnoid hemorrhage. Surg Neurol 69:592–596

    Article  PubMed  Google Scholar 

  34. Rothoerl RD, Schebesch KM, Kubitza M, et al (2006) IICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis 22:143–149

    Article  PubMed  CAS  Google Scholar 

  35. Sercombe R, Tran Dinh YR, Gomis P (2002) Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol 88:227–249

    Article  PubMed  CAS  Google Scholar 

  36. Ni W, Gu YX, Song DL, et al (2011) The relationship between IIL-6 and occurrence of vasospasm after subarachnoid hemorrhage. Acta Neurochir Suppl 110:203–208

    PubMed  CAS  Google Scholar 

  37. Fassbender K, Hodapp B, Rossol S, et al (2000) Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke 31:2971–2975

    Article  PubMed  CAS  Google Scholar 

  38. Sehba FA, Bederson JB (2011) Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110:99–103

    PubMed  Google Scholar 

  39. Sabri M, Ai J, Macdonald RL (2011) Nitric oxide related pathophysiological changes following subarachnoid hemorrhage. Acta Neurochir Suppl 110:105–109

    PubMed  Google Scholar 

  40. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    Article  PubMed  CAS  Google Scholar 

  41. Schwartz AY, Sehba FA, Bederson JB (2000) Decreased nitric oxide availability contributes to acute cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 47:208–214

    PubMed  CAS  Google Scholar 

  42. Sehba FA, Schwartz AY, Chereshnev II, et al (2000) Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab 20:604–611

    Article  PubMed  CAS  Google Scholar 

  43. Woszczyk A, Deinsberger W, Boker D (2003). Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid hemorrhage. Acta Neurochir (Wien) 145:257–264

    Article  CAS  Google Scholar 

  44. Zhang ZG, Chopp M, Bailey F, et al (1995) Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J Neurol Sci 128:22–27

    Article  PubMed  CAS  Google Scholar 

  45. McGirt MJ, Pradilla G, Legnani FG, et al (2006) Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 58:945–951

    Article  PubMed  Google Scholar 

  46. Sehba FA, Makonnen G, Friedrich V, et al (2007) Acute cerebral vascular injury occurs after subarachnoid hemorrhage and can be prevented by administration of a nitric oxide donor. J Neurosurg 106:321–329

    Article  PubMed  CAS  Google Scholar 

  47. Vikman P, Beg S, Khurana TS, et al (2006) Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat. J Neurosurg 105:438–444

    Article  PubMed  CAS  Google Scholar 

  48. Khaldi A, Zauner A, Reinert M, et al (2001) Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage. Neurosurgery 49:33–38

    PubMed  CAS  Google Scholar 

  49. Vatter H, Konczalla J, Seifert V (2011) Endothelin-related pathophysiology in cerebral vasospasm: what happens to the cerebral vessels? Acta Neurochir Suppl 110:177–180

    PubMed  Google Scholar 

  50. Hirose H, IIde K, Sasaki T, et al (1995) The role of endothelin and nitric oxide in the modulation of normal and spastic vascular tone in the dog. Eur J Pharmacol 277:77–87

    Article  PubMed  CAS  Google Scholar 

  51. Zimmerman M, Seifert V (1998) Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery 43:863–875

    Article  Google Scholar 

  52. Kobayashi H, IIde H, IIshii H, et al (1995) Endothelin-1 levels in plasma and cerebrospinal fluid following subarachnoid haemorrhage. J Clin Neurosci 2:252–256

    Article  PubMed  CAS  Google Scholar 

  53. Kasuya H, Weir BK, White DM, et al (1993) Mechanism of oxyhemoglobin-induced release of endothelin-1 from cultured vascular endothelial cells and smooth-muscle cells. J Neurosurg 79:892–898

    Article  PubMed  CAS  Google Scholar 

  54. Macdonald RL, Kassell NF, Mayer S, et al (2008) Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39:3015–3021

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hantson.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2012 dans la session : Pathologies cérébrales vasculaires graves : actualités.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hantson, P. Physiopathologie des lésions cérébrales précoces et retardées dans l’hémorragie sous-arachnoïdienne : avancées récentes. Réanimation 21 (Suppl 2), 475–481 (2012). https://doi.org/10.1007/s13546-011-0418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-011-0418-9

Mots clés

Keywords

Navigation