Skip to main content
Log in

Asymptotic analysis of oscillatory integrals with the Mittag-Leffler function as an oscillatory kernel

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Suppose \(\phi \in C^{\infty }{\left( {\mathbb {R}}\rightarrow [0,\infty )\right) }\) and \(\psi \in C^{\infty }_{c}{\left( {\mathbb {R}}\rightarrow {\mathbb {C}}\right) }\). Let \(E_{\alpha }\), \(0<\alpha \le 1\), denote the one-parameter Mittag-Leffler function. We show that the integral \({{\mathcal {I}}}_{\alpha }(\lambda ):=\int _{{\mathbb {R}}} {E}_{\alpha }{\left( \left( {\dot{\imath }} \lambda \phi (x)\right) ^{\alpha }\right) } \psi (x)dx\) is an oscillatory integral perturbation of the oscillatory integral \(\frac{1}{\alpha }\int _{{\mathbb {R}}} e^{{\dot{\imath }} \lambda \phi (x)} \psi (x)dx\). We obtain an asymptotic expansion for \({{\mathcal {I}}}_{\alpha }(\lambda )\) as \(\lambda \rightarrow \infty \) both when \(\phi \) is non-stationary and when it has a non-degenerate stationary point in the support of \(\psi \). Interestingly, the asymptotic behaviour of \({{\mathcal {I}}}_{\alpha }\) in the latter case depends on whether \(\alpha <1/2\), \(\alpha =1/2\), or \(\alpha >1/2\). The term of main contribution to the expansion is given explicitly in each case. Then we generalize this expansion to the case when there is a single point \(x_{0}\) in the support of \(\psi \) such that \(\phi ^{(j)}(x_{0})=0\), \(j=0,1,\dots , k-1\), while \(\phi ^{(k)}\ne 0\). We also obtain Van der Corput estimates for the oscillatory integral \(\int _{a}^{b} {E}_{\alpha }{\left( \left( {\dot{\imath }} \lambda \phi (x)\right) ^{\alpha }\right) } \psi (x)dx\), where \(-\infty<a<b<\infty \). The obtained estimates are sharp with respect to the order of decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdelhakim, A.A.: On the Lebesgue summablility of truncated double Fourier series. Acta Mathematica Hungarica 148(2), 425–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdelhakim, A.A.: \({L^p-L^q}\) boundedness of integral operators with oscillatory kernels: linear versus quadratic phases. Applicable Analysis 96(8), 1342–1357 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Foschi, D.: Inhomogeneous Strichartz estimates. Journal of Hyperbolic Differential Equations 2(01), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Foschi, D.: Some remarks on the \({L^{p}-L^{q}}\) boundedness of trigonometric sums and oscillatory integrals. Communications on Pure and Applied Analysis 4(3), 569–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  6. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \( {E}_{\alpha,\beta }(z)\) and its derivative. Fractional Calculus and Applied Analysis 5(4), 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Grafakos, L.: Classical Fourier Analysis. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  8. Hormander, L.: The Analysis of Partial Differential Operators. Springer, Berlin (1983)

    MATH  Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier (2006)

  10. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press (1999)

    MATH  Google Scholar 

  11. Ruzhansky, M., Torebek, B.T.: Multidimensional Van der Corput-type estimates involving Mittag-Leffler functions. Fractional Calculus and Applied Analysis 23(6), 1663–1677 (2020). https://doi.org/10.1515/fca-2020-0082

    Article  MathSciNet  MATH  Google Scholar 

  12. Ruzhansky, M., Torebek, B.T.: Van der Corput lemmas for Mittag-Leffler functions (2020). arXiv preprint arXiv:2002.07492

  13. Ruzhansky, M., Torebek, B.T.: Van der Corput lemmas for Mittag-Leffler functions. ii. \(\alpha \)–directions. Bulletin des Sciences Mathématiques 171, 103016 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Bull. Amer. Math. Soc. 36, 505–521 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the diligent review and would like to thank the reviewers for their valuable comments.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the preparation and content of the manuscript.

Corresponding author

Correspondence to Ahmed A. Abdelhakim.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 1

Appendix A: Proof of Lemma 1

Proof

Observe that \(D_{\phi }^{m}{e^{-a\lambda \phi (x) r}} =\left( -a\lambda r\right) ^{m}{e^{-a\lambda \phi (x) r}}\). Therefore

$$\begin{aligned} \int _{{\mathbb {R}}} {e^{-a\lambda \phi (x) r}}\psi (x)dx= & {} \frac{1}{\left( -a\lambda r\right) ^{m}} \int _{{\mathbb {R}}}\psi (x) D_{\phi }^{m}{e^{-a\lambda \phi (x) r}}dx\nonumber \\= & {} \frac{1}{\left( -a\lambda r\right) ^{m}} \int _{{\mathbb {R}}} {e^{-a\lambda \phi (x) r}} \left( ^tD_{\phi }\right) ^{m}\psi (x)dx. \end{aligned}$$

This gives the identity (4.1). The estimate (4.2) follows then by the integrability of \(r\mapsto r^{b-m}\) on \([c,\infty )\) for \(m>1+b\). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhakim, A.A. Asymptotic analysis of oscillatory integrals with the Mittag-Leffler function as an oscillatory kernel. Fract Calc Appl Anal 26, 1186–1205 (2023). https://doi.org/10.1007/s13540-023-00154-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00154-3

Keywords

Mathematics Subject Classification

Navigation