Skip to main content
Log in

Optical Reflector and Selective Polarization Filter Based on 1D-Photonic Crystal Containing Si-YBCO Layer

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this communication, the design of broad band optical reflector and selective polarization filter using a one-dimensional photonic crystal (1D-PC) containing superconductor and semiconductor layer has been proposed and investigated theoretically. The proposed design consists of alternate layers of yttrium barium copper oxide YBa2Cu3O7 (YBCO) and silicon (Si), respectively. The refractive indices of YBCO and Si layers are modulated as the function of temperature and wavelength both. This characteristic brings this study closer to actual physical implementation. To obtain the reflectance and transmittance properties of the proposed structure and to analyze the propagation characteristics of electromagnetic waves, the transfer matrix method (TMM) has been employed. The analysis of the reflectance spectra shows that near the critical temperature of YBCO layers no broad band reflection (from 0 to 85°) is observed. On the other hand, when the temperature is lowered below the critical temperature, ODR arises. The proposed YBCO/Si structure gives a broad band reflection band (from 1394 to 1621 nm (bandwidth 227 nm)) for both TE and TM modes of polarizations at 85 K. Also, at higher incident angles, the proposed structure acts as a selective polarization-based filter without introducing any defect in the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state-physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2088 (1987)

    Article  ADS  Google Scholar 

  3. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995)

    Google Scholar 

  4. M. Scalora, J.P. Dowling, C.M. Bowden, M.J. Bloemer, Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials. Phys. Rev. Lett. 73, 1368 (1994)

    Article  ADS  Google Scholar 

  5. S. Kazuaki, Optical properties of photonic crystals (Springer, Berlin, 2005)

    Google Scholar 

  6. M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, A. Forchel, Semiconductor photonic crystals for optoelectronics. Phys. E. 21, 802 (2004)

    Article  Google Scholar 

  7. V. Kumar, B. Suthar, A. Kumar, Kh.S. Singh, A. Bhargava, The effect of temperature on photonic bandgap in dispersive Si-based one-dimensional photonic crystal. Physica B: Cond. Matt. 416, 106–109 (2013)

    Article  ADS  Google Scholar 

  8. B. Suthar, Tuning of guided mode in two-dimensional chalcogenide based photonic crystal waveguide. Optik 126(22), 3429–3431 (2015)

    Article  ADS  Google Scholar 

  9. V. Kumar, Kh.S. Singh, S.P. Ojha, Band structure, reflection properties and abnormal behaviour of one-dimensional plasma photonic crystals. Prog. Electromagn. Res. M 9, 227–241 (2009)

    Article  Google Scholar 

  10. O. Soltani, S. Francoeur, M. Kanzari, Superconductor-based quaternary photonic crystals for high sensitivity temperature sensing. Chin. J. Phys. 77, 176–188 (2022)

    Article  Google Scholar 

  11. K.B. Thapa, S. Srivastava, S. Tiwari, Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals. J. Supercond. Nov. Magn. 23, 517 (2010)

    Article  Google Scholar 

  12. S.W. Leonard, J.P. Mondia, H.M. Van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys. Rev. B 61, R2389 (2000)

    Article  ADS  Google Scholar 

  13. A.H. Aly, A.A. Ameen, H.A. Elsayed, S.H. Mohamed, M.R. Singh, One-dimensional metallo-superconductor photonic crystals as a smart window. J. Supercond. Nov. Magn. 32, 2313–2318 (2019)

    Article  Google Scholar 

  14. C.J. Wu, M.S. Chen, T.J. Yang, Photonic band structure for a superconductor dielectric superlattice. Physica C 432, 133–139 (2005)

    Article  ADS  Google Scholar 

  15. H.M. Lee, J.C. Wu, Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. J. Appl. Phys107, 09E149–09E149–3 (2010)

  16. K.P. Sreejith, V. Mathew, Investigation of transmission properties in one-dimensional quasi-periodic superconducting photonic crystal. J. Supercond. Nov. Magn. 31(6), 1–6 (2018)

    Google Scholar 

  17. H. Rauh, Y.A. Genenko, The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite. J. Phys. Condens. Matter. 20, 145203 (2008)

  18. A.H. Aly, S.W. Ryu, H.T. Hsu, C.J. Wu, THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Mater. Chem. Phys. 113, 382–384 (2009)

    Article  Google Scholar 

  19. A.H. Aly, H.-T. Hsu, T.J. Yang, C.J. Wu, C.K. Hwangbo, Extraordinary optical properties of a superconducting periodic multilayer near zero permittivity operation range. J. Appl. Phys. 105, 083917 (2009)

    Article  ADS  Google Scholar 

  20. M.K. Chhipa, M. Radhouene, S. Robinson, B. Suthar, Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Engg. 56(1), 015107 (2017)

    Article  ADS  Google Scholar 

  21. V. Kumar, B. Suthar, A. Kumar, K.S. Singh, A. Bhargava, S.P. Ojha, Silicon based one-dimensional photonic crystal as a TM-mode filter. SILICON 6(1), 73–78 (2014)

    Article  Google Scholar 

  22. I.L. Lyubchanskii, N.N. Dadonenkova, A.E. Zabolotin, Y.P. Lee, T. Rasing, A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A Pure Appl. Opt. 11, 114014 (2009)

    Article  ADS  Google Scholar 

  23. C.J. Wu, C.L. Liu, W.K. Kuo, Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal. J. Electromagn. Waves Appl. 23, 1113 (2009)

    Article  ADS  Google Scholar 

  24. C.J. Wu, M.S. Chen, T.J. Yang, Photonic band structure for a superconductor-dielectric superlattice. Physica C 432, 133 (2005)

    Article  ADS  Google Scholar 

  25. S.K. Srivastava, Study of defect modes in 1D photonic crystal structure containing high and low Tc superconductor as a defect layer. J. Supercond. Nov. Magn. 27, 101–114 (2014)

    Article  Google Scholar 

  26. S.K. Srivastava, A. Aghajamali, Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor. J. Supercond. Nov. Magn. 29, 1423–1431 (2016)

    Article  Google Scholar 

  27. S.K. Srivastava, A. Aghajamali, Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high temperature superconductor. J. Supercond. Nov. Magn. 30(2), 343–351 (2016)

    Article  Google Scholar 

  28. S.K. Srivastava, A. Aghajamali, Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor. Opt. Applicat. 49(1), 37–50 (2019)

    Google Scholar 

  29. R.N. Yaw, Thesis, Transmission properties of a high critical temperature superconductor/dielectric multilayer photonic bandgap, Huntsvill, Alabama (2002)

  30. K.P. Sreejith, V. Mathew, Optical properties of planar and annular ternary superconducting photonic crystals in near-zero-permittivity operation range. J. Supercond. Nov. Magn. 32, 2397–2407 (2019)

    Article  Google Scholar 

  31. A. Aghajamali, T. Alamfard, Defective annular semiconductor superconductor photonic crystal. (2020). arXiv:2004.08149

  32. C.J. Wu, Transmission and reflection in a periodic superconductor/dielectric film multilayer structure. J. Electromagnet. Wave Appl. 19, 1991–1996 (2005)

    Article  ADS  Google Scholar 

  33. C.J. Wu, Field solutions for the Swihart wave and surface plasmon in superconducting/dielectric film multilayer structures in the mixed state. J. Appl. Phys. 95, 3348–3354 (2005)

    Google Scholar 

  34. H.H. Li, Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9, 561 (1980)

    Article  ADS  Google Scholar 

  35. P. Yeh, Optical waves in layered media (John Wiley & Sons, Singapore, 1991)

    Google Scholar 

  36. S.A. Taya, N. Doghmosh, M.A. Abutailkh, A. Upadhyay, Z.M. Nassar, I. Colak, Properties of band gap for p-polarized wave propagating in a binary superconductor-dielectric photonic crystal. Optik 243, 167505 (2021)

    Article  ADS  Google Scholar 

  37. L.E. Gonzalez, L.M. Segura-Gutierrez, J.E. Ordonez, G. Zambrano, J.H. Reina, A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature. Photonics 9, 485 (2022)

    Article  Google Scholar 

  38. G.N. Pandey, B. Suthar, N. Kumar, K.B. Thapa, Omnidirectional reflectance of superconductor-dielectric photonic crystal in thz frequency range. J. Supercond. Nov. Magn. 34, 2031–2039 (2021). https://doi.org/10.1007/s10948-021-05962-3

    Article  Google Scholar 

Download references

Funding

There is not any funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

V. K. numerically computed the result and prepared all Figs. 1, 2, 3, 4, 5, 6, 7, and 8. He wrote the introduction and theoretical part. S. K. introduced the concept and wrote the main manuscript text, result, and discussion. R. K. reviewed the manuscript and rechecked the whole manuscript.

Corresponding author

Correspondence to Sanjeev K. Srivastava.

Ethics declarations

Competing Interests

Authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Srivastava, S.K. & Kumar, R. Optical Reflector and Selective Polarization Filter Based on 1D-Photonic Crystal Containing Si-YBCO Layer. Braz J Phys 54, 109 (2024). https://doi.org/10.1007/s13538-024-01492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01492-0

Keywords

Navigation