Skip to main content
Log in

Molecular Interactions Studies on Chloroform in the Environment of o-Cresol: FTIR Spectroscopy and Quantum Chemical Calculations

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The molecular association of chloroform with o-cresol compound was studied by quantum chemical calculations using different basis sets (6-31G (d,p), 6–31 + + G (d,p), and 6–311 + + G (d,p)) and their respective counterpoise corrected energies, geometries and frequencies were analyzed. Fourier transform infrared spectroscopy (FTIR) spectra (ATR mode) of chloroform, o-cresol, and the various mole fractions of chloroform: o-cresol (0.8:0.2, 0.6:0.4, 0.4:0.6, and 0.2:0.8) have been recorded at ambient temperature. The quantum chemical calculations of chloroform (monomer, dimer, and trimer) and o-cresol (monomer, dimer, and trimer) and the complex structures of 1:1 and 2:1 (o-cresol: chloroform) were optimized and analyzed using density functional theory (DFT). From the results of FTIR spectroscopy and DFT calculations, the following H-bonds were identified (o-cresol methyl and/or aryl) C-H…Cl (chloroform) and (chloroform) C-H…O and/or π (o-cresol). The trend of theoretical frequencies of the complex structures 2:2 and 2:3 exactly follow the experimental FTIR frequencies. The monomeric and dimeric associations of chloroform and dimeric, trimeric forms of o-cresol are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. V. Arjunan, S. Mohan, Fourier transform infrared and FT-Raman spectra, assignment, ab initio, DFT and normal co-ordinate analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline. Spectrochim. Acta A Mol. Biomol. Spectrosc 72, 436–444 (2009). https://doi.org/10.1016/j.saa.2008.10.017

    Article  ADS  Google Scholar 

  2. M. Hippler, Quantum-chemical study of CH Cl3–SO2 association, J. chem. Phys. 123, 204311 (2005). https://doi.org/10.1063/1.2121609

  3. S. Chung, M. Hippler, Infrared spectroscopy of hydrogen-bonded CH Cl3–SO2 in the gas phase. J. Chem. Phys. 124, 214316 (2006). https://doi.org/10.1063/1.2207617

  4. M. Hippler, S. Hesse, M.A. Suhm, Quantum-chemical study and FTIR jet spectroscopy of CHCl3–NH3 association in the gas phase. Phys. Chem. Chem. Phys. 12(41), 13555–13565 (2010)

    Article  Google Scholar 

  5. X. Nie, X. Liu, C. Song, X. Guo, Brønsted acid-catalyzed tert-butylation of phenol, o-cresol and catechol: A comparative computational study. J. Mol. Catal. 332, 145–151 (2010). https://doi.org/10.1016/j.molcata.2010.09.010

    Article  Google Scholar 

  6. H.S. Biswal, P.R. Shirhatti, S. Wategaonkar, O− H··· O versus O− H··· S hydrogen bonding I: experimental and computational studies on the p-cresol· H2O and p-cresol· H2S complexes. J. Phys. Chem A. 113, 5633–5643 (2009). https://doi.org/10.1021/jp9009355

    Article  Google Scholar 

  7. R. Balaji, M.G. Sankar, M.C. Sekhar, M.C. Shekar, FT-IR Spectroscopic study of excess thermodynamic properties of liquid mixtures containing N-methylformamide with 2-alkoxyethanols at various temperatures. J. Mol. Liq. 216, 330–341 (2016). https://doi.org/10.1016/j.molliq.2015.12.051

    Article  Google Scholar 

  8. N. Sundaraganesan, C. Meganathan, H. Saleem, B.D. Joshua, Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 5-amino-o-cresol. Spectrochim. Acta A Mol. Biomol. Spectrosc 68, 619–625 (2007). https://doi.org/10.1016/j.saa.2006.12.036

    Article  ADS  Google Scholar 

  9. Y. Li, Z. Liu, W. Xue, S.P. Crossley, F.C. Jentoft, S. Wang, Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations. Appl. Surf. Sci. 393, 212–220 (2017). https://doi.org/10.1016/j.apsusc.2016.10.028

    Article  ADS  Google Scholar 

  10. A. Andersen, Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int. J. Toxicol 25, 29–127 (2006). https://doi.org/10.1080/10915810600716653

    Article  Google Scholar 

  11. N.H. Williams, W.M. Whitten, orchid floral fragrances and male englossine bees; methods and advances in the sesquidecade, Biol. Bull. 164, 355–395 (1933). https://doi.org/10.2307/1541248

  12. I.G. Tironi, W.F. Van Gunsteren, A molecular dynamics simulation study of chloroform. Mol. Phys 83, 381–403 (1994). https://doi.org/10.1080/00268979400101331

    Article  ADS  Google Scholar 

  13. P. Watts, G. Long, M. E. Meek, Chloroform, World Health Organization. 58 (2004)

  14. R. Luo, M.S. Head, J.A. Given, M.K. Gilson, Nucleic acid base-pairing and N-methylacetamide self-association in chloroform: affinity and conformation. Biophys. Chem. 78, 183–193 (1999). https://doi.org/10.1016/S0301-4622(98)00229-4

    Article  Google Scholar 

  15. S. Singh, C.R. Rao, Spectroscopic studies of self-association due to hydrogen bonding. J. Phys. Chem. A 71, 1074–1078 (1967). https://doi.org/10.1021/j100863a044

    Article  Google Scholar 

  16. W.L. Jorgensen, D.L. Severance, Chemical chameleons: hydrogen bonding with imides and lactams in chloroform. J. Am. Chem. Soc. 113, 209–216 (1991). https://doi.org/10.1021/ja00001a030

    Article  Google Scholar 

  17. F. Eblinger, H.J. Schneider, Self-association of water and water− solute associations in chloroform studied by NMR shift titrations. J. Phys. Chem. A 100, 5533–5537 (1996). https://doi.org/10.1021/jp952596w

    Article  Google Scholar 

  18. C.J. Creswell, A.L. Allred, Thermodynamic constants for hydrogen bond formation in the chloroform-benzene-cyclohexane system. J. Phys. Chem. 66, 1469–1472 (1962). https://doi.org/10.1021/j100814a021

    Article  Google Scholar 

  19. B.W. Foster, R.L. Huggins, J. Robeson, E.T. Adams Jr., Mixed association of cholesterol with methyl cholate and methyl lithocholate in chloroform solutions. Biophys. Chem. 16, 317–328 (1982). https://doi.org/10.1016/0301-4622(82)87036-1

    Article  Google Scholar 

  20. F. Takahashi, N.C. Li, Proton Magnetic Resonance Studies of Hydrogen Bonding in Amine-Acetamide-Chloroform Systems1. J. Phys. Chem. A 69, 2950–2954 (1965). https://doi.org/10.1021/j100893a020

    Article  Google Scholar 

  21. W.C. Luo, J.L. Lay, J.S. Chen, NMR study of hydrogen bonding association of some sterically hindered alcohols in carbon tetrachloride, chloroform and cyclohexane. Phys. Chem. Chem. 216, 829–843 (2002). https://doi.org/10.1524/zpch.2002.216.7.829

    Article  Google Scholar 

  22. C.M. Huggins, G.C. Pimentel, J.N. Shoolery, Proton magnetic resonance studies of chloroform in solution: evidence for hydrogen bonding. Chem. Phys. 23, 1244–1247 (1955). https://doi.org/10.1063/1.1742249

    Article  ADS  Google Scholar 

  23. L.E. Bromberg, D.P. Barr, Self-association of mucin. Biomacromol 1, 325–334 (2000). https://doi.org/10.1021/bm005532m

    Article  Google Scholar 

  24. A. Coutinho, M. Prieto, Self-association of the polyene antibiotic nystatin in dipalmitoylphosphatidylcholine vesicles: a time-resolved fluorescence study. Biophys. J. 69, 2541 (1995). https://doi.org/10.1016/S0006-3495(95)80125-6

    Article  ADS  Google Scholar 

  25. P. Hobza, Z. Havlas, Blue-shifting hydrogen bonds. Chem. Rev. 100, 4253–4264 (2000). https://doi.org/10.1021/cr990050q

    Article  Google Scholar 

  26. G.A. Jeffrey, W. Saenger, Hydrogen bonding in biological structures, Springer Science & Business Media, (1991)

  27. G.A. Jeffrey, G.A. Jeffrey, An introduction to hydrogen bonding, vol. 12 (Oxford University Press, New York, 1997)

    Google Scholar 

  28. G.R. Desiraju, T. Steiner, The weak hydrogen bond: in structural chemistry and biology, Vol. 9. International Union of Crystal, (2001)

  29. A.D. Buckingham, J.E. Del Bene, S.A.C. McDowell, The hydrogen bond. Chem. Phys. Lett. 463, 1–10 (2008). https://doi.org/10.1016/j.cplett.2008.06.060

    Article  ADS  Google Scholar 

  30. K. Müller-Dethlefs, P. Hobza, Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 100, 143–168 (2000). https://doi.org/10.1021/cr9900331

    Article  Google Scholar 

  31. S.J. Grabowski, Hydrogen bonding strength—measures based on geometric and topological parameters. J. Phys. Org. Chem. 17, 18–31 (2004). https://doi.org/10.1002/poc.685

    Article  Google Scholar 

  32. G.R. Desiraju, Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35, 565–573 (2002). https://doi.org/10.1021/ar010054t

    Article  Google Scholar 

  33. U. Koch, P.L. Popelier, Characterization of CHO hydrogen bonds on the basis of the charge density. J. Phys. Chem. A. 99, 9747–9754 (1995). https://doi.org/10.1021/j100024a016

    Article  Google Scholar 

  34. M. Arivazhagan, V.P. Subhasini, A. Austine, Vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 4-chloro-2-(trifluoromethyl) aniline based on DFT calculations Spectrochim. Acta A Mol. Biomol. Spectrosc. 86, 205–213 (2012). https://doi.org/10.1016/j.saa.2011.10.026

    Article  ADS  Google Scholar 

  35. A. Elangovan, R. Shanmugam, G. Arivazhagan, A. Mahendraprabu, N.K. Karthick, Intermolecular forces in acetonitrile+ ethanol binary liquid mixtures. Chem. Phys. Lett. 639, 161–165 (2015). https://doi.org/10.1016/j.cplett.2015.09.022

    Article  ADS  Google Scholar 

  36. H.G. Korth, M.I. de Heer, P. Mulder, A DFT study on intramolecular hydrogen bonding in 2-substituted phenols: conformations, enthalpies, and correlation with solute parameters. J. Phys. Chem. A 106, 8779–8789 (2002). https://doi.org/10.1021/jp025713d

    Article  Google Scholar 

  37. R.M.Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds, John Wiley & Sons Inc., 2005 N.K. Karthick, G. Arivazhagan, R. Shanmugam, J. Mol. Struct. 1173, 456 (2018). https://doi.org/10.1021/ed039p546

  38. S. Jeyavijayan, Molecular structure, spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO–LUMO analysis of 2, 4-difluoroacetophenone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 553–566 (2015)

    Article  ADS  Google Scholar 

  39. P.R. Griffiths, J.M. Chalmers, Handbook of vibrational spectroscopy, John Wiley & Sons Inc. (2002)

  40. D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to spectroscopy – a guide for students of organic chemistry, Brooks/ Cole- Thomson Learning, (2001)

  41. D.L. Jadhav, N.K. Karthick, P.P. Kannan, R. Shanmugam, A. Elangovan, G. Arivazhagan, Molecular interaction forces in acetone+ ethanol binary liquid solutions: FTIR and theoretical studies. J. Mol. Struct. 1130, 497 (2017). https://doi.org/10.1016/j.molstruc.2016.10.055

    Article  ADS  Google Scholar 

  42. J. Stangret, E.K. Piotrowicz, K. Laskowska, In-situ analysis of CO2 electroreduction on Pt and Pt oxide cathodes. Vib. Spectroscopy 44, 324 (2007). https://doi.org/10.5796/electrochemistry.19-00066

    Article  Google Scholar 

  43. I.D.H. Oswald, W.A. Crichton CCDC 698229: experimental crystal structure determination, (2010). https://doi.org/10.5517/ccrfkj7

  44. M. Hippler, Quantum chemical study and infrared spectroscopy of hydrogen-bonded CH Cl3–NH3 in the gas phase. J. Chem. Phys, 127, 084306 (2007). https://doi.org/10.1063/1.2757176

  45. J.A. Plumley, and J.J. Dannenberg, A comparison of the behavior functional/ basis set combinations for hydrogen- bonding in the water dimer with emphasis on basis set superposition error. J. Comput. Chem, 8 (2011):1519-1527

Download references

Acknowledgements

I am thankful to Thiagarajar Arts and science college management for providing lab facilities.

Funding

B. Sahaya Infant Lasalle is supported by the management of Sri Sivasubramaniya Nadar College of Engineering through SSN Senior Research Assistant (SRA) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sahaya Infant Lasalle.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasalle, B.S.I., Pandian, M.S. & Ramasamy, P. Molecular Interactions Studies on Chloroform in the Environment of o-Cresol: FTIR Spectroscopy and Quantum Chemical Calculations. Braz J Phys 53, 97 (2023). https://doi.org/10.1007/s13538-023-01309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01309-6

Keywords

Navigation