Skip to main content
Log in

Computational study of phenolic compounds-water clusters

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Eight molecules (phenol, o-cresol, m-cresol, p-cresol, pyrocatechol, guaiacol, syringol, and vanillin) were investigated in their one water complex clusters by quantum calculations using B3LYP/cc-pVTZ level of theory. For the first time, the structures of o-cresol, m-cresol, syringol, and vanillin with water were determined. When in contact with water, phenol, cresols, and pyrocatechol present a translinear structure while guaiacol and syringol are in cyclic configurations. It was found that vanillin and water interact via the aldehyde function and the presence of H2O does not affect the intramolecular hydrogen bond in the vanillin structure. The NBO analysis indicates that water electronegativity increases in the structures as follows: translinear < cyclic < vanillin. The HOMO-LUMO energy gap shows that the presence of water increases the hardness of guaiacol and syringol. This phenomenon is probably caused by the cyclic conformations created between water and the phenolic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pakdel H, Amen-Chen C, Zhang J, Roy C (1996) Phenolic compounds from vacuum pyrolysis of biomass. Bio-Oil Prod Util CPL Press UK:124–136

  2. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493. https://doi.org/10.1016/S0146-6380(99)00120-5

    Article  CAS  Google Scholar 

  3. Bridgwater AV, Bridge SA (1991) A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater AV, Grassi G (eds) Biomass pyrolysis liquids upgrading and utilization. Springer Netherlands, Dordrecht, pp 11–92

    Chapter  Google Scholar 

  4. Pakdel H, Roy C, Amen-Chen C (1997) Phenolic compounds from vacuum pyrolysis of wood wastes. Can J Chem Eng 75:121–126. https://doi.org/10.1002/cjce.5450750119

    Article  CAS  Google Scholar 

  5. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299. https://doi.org/10.1016/S0960-8524(00)00180-2

    Article  CAS  Google Scholar 

  6. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  Google Scholar 

  7. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31:736–745. https://doi.org/10.1002/ceat.200800073

    Article  CAS  Google Scholar 

  8. Murwanashyaka JN, Pakdel H, Roy C (2001) Separation of syringol from birch wood-derived vacuum pyrolysis oil. Sep Purif Technol 24:155–165. https://doi.org/10.1016/S1383-5866(00)00225-2

    Article  CAS  Google Scholar 

  9. Amen-Chen C, Pakdel H, Roy C (1997) Separation of phenols from eucalyptus wood tar. Biomass Bioenergy 13:25–37. https://doi.org/10.1016/S0961-9534(97)00021-4

    Article  CAS  Google Scholar 

  10. Wang S, Wang Y, Cai Q et al (2014) Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil. Sep Purif Technol 122:248–255. https://doi.org/10.1016/j.seppur.2013.11.017

    Article  Google Scholar 

  11. Lavoie J-M, Baré W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour Technol 102:4917–4920. https://doi.org/10.1016/j.biortech.2011.01.010

    Article  CAS  Google Scholar 

  12. Helmut F, Heinz-Werner V, Toshikazu H, Wilfrried P (1985) Phenol derivatives. Ullmann’s Encycl Ind Chem VCH Ger 19:299–357

    Google Scholar 

  13. Ikegami F, Sekine T, Fujii Y (1998) Anti-dermaptophyte activity of phenolic compounds in “mokusaku-eki”. Yakugaku Zasshi 118:27–30

    Article  CAS  Google Scholar 

  14. Maga JA, Katz I (1978) Simple phenol and phenolic compounds in food flavor. C R C Crit Rev Food Sci Nutr 10:323–372. https://doi.org/10.1080/10408397809527255

    Article  CAS  Google Scholar 

  15. Fiege H, Voges H-W, Hamamoto T, et al (2000) Phenol derivatives. In: Wiley-VCH Verlag GmbH & Co. KGaA (ed) Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

  16. Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 92:201–208. https://doi.org/10.1016/j.biortech.2003.06.002

    Article  CAS  Google Scholar 

  17. Patel RN, Bandyopadhyay S, Ganesh A (2011) Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy 36:1535–1542. https://doi.org/10.1016/j.energy.2011.01.009

    Article  CAS  Google Scholar 

  18. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166. https://doi.org/10.1016/j.supflu.2006.03.020

    Article  CAS  Google Scholar 

  19. Le Floch F, Tena M, Rı́os A, Valcárcel M (1998) Supercritical fluid extraction of phenol compounds from olive leaves. Talanta 46:1123–1130. https://doi.org/10.1016/S0039-9140(97)00375-5

    Article  Google Scholar 

  20. Castro-Vargas HI, Rodríguez-Varela LI, Ferreira SRS, Parada-Alfonso F (2010) Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J Supercrit Fluids 51:319–324. https://doi.org/10.1016/j.supflu.2009.10.012

    Article  CAS  Google Scholar 

  21. Rout PK, Naik MK, Naik SN et al (2009) Supercritical CO2 fractionation of bio-oil produced from mixed biomass of wheat and wood sawdust. Energy Fuel 23:6181–6188. https://doi.org/10.1021/ef900663a

    Article  CAS  Google Scholar 

  22. Capunitan JA, Capareda SC (2013) Characterization and separation of corn stover bio-oil by fractional distillation. Fuel 112:60–73. https://doi.org/10.1016/j.fuel.2013.04.079

    Article  CAS  Google Scholar 

  23. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A (2010) Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15:8813–8826. https://doi.org/10.3390/molecules15128813

    Article  CAS  Google Scholar 

  24. Radlein D (1997) Chemicals and materials from biomass. PyNe Pyrolysis Netw 4

  25. Thring RW, Breau J (1996) Hydrocracking of solvolysis lignin in a batch reactor. Fuel 75:795–800. https://doi.org/10.1016/0016-2361(96)00036-1

    Article  CAS  Google Scholar 

  26. Fu D, Farag S, Chaouki J, Jessop PG (2014) Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresour Technol 154:101–108. https://doi.org/10.1016/j.biortech.2013.11.091

    Article  CAS  Google Scholar 

  27. Jalili S, Akhavan M (2007) Study of hydrogen-bonded clusters of 2-methoxyphenol–water. Theor Chem Accounts 118:947–957. https://doi.org/10.1007/s00214-007-0378-3

    Article  CAS  Google Scholar 

  28. Avila DV, Ingold KU, Lusztyk J et al (1995) Dramatic solvent effects on the absolute rate constants for abstraction of the hydroxylic hydrogen atom from tert-butyl hydroperoxide and phenol by the cumyloxyl radical. The role of hydrogen bonding. J Am Chem Soc 117:2929–2930. https://doi.org/10.1021/ja00115a029

    Article  CAS  Google Scholar 

  29. Cesari L, Canabady-Rochelle L, Mutelet F (2018) Computational study on the molecular conformations of phenolic compounds. Struct Chem 29:179–194. https://doi.org/10.1007/s11224-017-1017-9

    Article  CAS  Google Scholar 

  30. Fang W-H (2000) Theoretical characterization of the excited-state structures and properties of phenol and its one-water complex. J Chem Phys 112:1204–1211. https://doi.org/10.1063/1.480673

    Article  CAS  Google Scholar 

  31. Schumm S, Gerhards M, Roth W et al (1996) A CASSCF study of the S0 and S1 states of phenol. Chem Phys Lett 263:126–132. https://doi.org/10.1016/S0009-2614(96)01172-4

    Article  CAS  Google Scholar 

  32. Feller D, Feyereisen MW (1993) Ab initio study of hydrogen bonding in the phenol-water system. J Comput Chem 14:1027–1035. https://doi.org/10.1002/jcc.540140904

    Article  CAS  Google Scholar 

  33. Schütz M, Bürgi T, Leutwyler S (1992) Structures and vibrations of phenol · H2O and d-phenol D2O based on ab initio calculations. J Mol Struct THEOCHEM 276:117–132. https://doi.org/10.1016/0166-1280(92)80026-I

    Article  Google Scholar 

  34. Watanabe H, Iwata S (1996) Theoretical studies of geometric structures of phenol-water clusters and their infrared absorption spectra in the O–H stretching region. J Chem Phys 105:420–431. https://doi.org/10.1063/1.471918

    Article  CAS  Google Scholar 

  35. Kojima T (1960) Potential barrier of phenol from its microwave spectrum. J Phys Soc Jpn 15:284–287. https://doi.org/10.1143/JPSJ.15.284

    Article  CAS  Google Scholar 

  36. Pohl M, Kleinermanns K (1988) Ab initio SCF calculations on hydrogen bonded cresol isomers. Z Für Phys At Mol Clust 8:385–392. https://doi.org/10.1007/BF01437106

    Article  CAS  Google Scholar 

  37. Dietrich SW, Jorgensen EC, Kollman PA, Rothenberg S (1976) A theoretical study of intramolecular hydrogen bonding in ortho-substituted phenols and thiophenols. J Am Chem Soc 98:8310–8324. https://doi.org/10.1021/ja00442a002

    Article  CAS  Google Scholar 

  38. Welzel A, Hellweg A, Merke I, Stahl W (2002) Structural and torsional properties of o-cresol and o-cresol-OD as obtained from microwave spectroscopy and ab initio calculations. J Mol Spectrosc 215:58–65. https://doi.org/10.1006/jmsp.2002.8600

    Article  CAS  Google Scholar 

  39. Balachandran V, Murugan M, Nataraj A et al (2014) Comparative vibrational spectroscopic studies, HOMO–LUMO, NBO analyses and thermodynamic functions of p-cresol and 2-methyl-p-cresol based on DFT calculations. Spectrochim Acta A Mol Biomol Spectrosc 132:538–549. https://doi.org/10.1016/j.saa.2014.04.194

    Article  CAS  Google Scholar 

  40. Richardson PR, Chapman MA, Wilson DC et al (2002) The nature of conformational preference in a number of p-alkyl phenols and p-alkyl benzenes. Phys Chem Chem Phys 4:4910–4915. https://doi.org/10.1039/b203954k

    Article  CAS  Google Scholar 

  41. Hellweg A, Hättig C (2007) On the internal rotations in p-cresol in its ground and first electronically excited states. J Chem Phys 127:024307. https://doi.org/10.1063/1.2752163

    Article  Google Scholar 

  42. Hellweg A, Hättig C, Merke I, Stahl W (2006) Microwave and theoretical investigation of the internal rotation in m-cresol. J Chem Phys 124:204305. https://doi.org/10.1063/1.2198842

    Article  Google Scholar 

  43. Puebla C, Ha T-K (1990) A theoretical study of conformations and rotational barriers in dihydroxybenzenes. J Mol Struct THEOCHEM 204:337–351. https://doi.org/10.1016/0166-1280(90)85085-2

    Article  Google Scholar 

  44. Bürgi T, Leutwyler S (1994) O–H torsional vibrations in the S 0 and S 1 states of catechol. J Chem Phys 101:8418–8429. https://doi.org/10.1063/1.468104

    Article  Google Scholar 

  45. Gerhards M, Perl W, Schumm S et al (1996) Structure and vibrations of catechol and catechol·H2O(D2O) in the S0 and S1 state. J Chem Phys 104:9362. https://doi.org/10.1063/1.471682

    Article  CAS  Google Scholar 

  46. Rudyk R, Molina MAA, Gómez MI et al (2004) Solvent effects on the structure and dipole moment of resorcinol. J Mol Struct THEOCHEM 674:7–14. https://doi.org/10.1016/j.theochem.2003.12.019

    Article  CAS  Google Scholar 

  47. Gómez-Zaleta B, Gómez-Balderas R, Hernández-Trujillo J (2010) Theoretical analysis of hydrogen bonding in catechol–n(H2O) clusters (n = 0…3). Phys Chem Chem Phys 12:4783. https://doi.org/10.1039/b922203k

    Article  Google Scholar 

  48. Mandado M, Graña AM, Mosquera RA (2004) Do 1,2-ethanediol and 1,2-dihydroxybenzene present intramolecular hydrogen bond? Phys Chem Chem Phys 6:4391–4396. https://doi.org/10.1039/B406266C

    Article  CAS  Google Scholar 

  49. Agache C, Popa VI (2006) Ab initio studies on the molecular conformation of lignin model compounds I. Conformational preferences of the phenolic hydroxyl and Methoxy groups in Guaiacol. Monatshefte Für Chem - Chem Mon 137:55–68. https://doi.org/10.1007/s00706-005-0404-x

    Article  CAS  Google Scholar 

  50. Dorofeeva OV, Shishkov IF, Karasev NM et al (2009) Molecular structures of 2-methoxyphenol and 1,2-dimethoxybenzene as studied by gas-phase electron diffraction and quantum chemical calculations. J Mol Struct 933:132–141. https://doi.org/10.1016/j.molstruc.2009.06.009

    Article  CAS  Google Scholar 

  51. Varfolomeev MA, Abaidullina DI, Solomonov BN et al (2010) Pairwise substitution effects, inter- and intramolecular hydrogen bonds in methoxyphenols and dimethoxybenzenes. Thermochemistry, calorimetry, and first-principles calculations. J Phys Chem B 114:16503–16516. https://doi.org/10.1021/jp108459r

    Article  CAS  Google Scholar 

  52. Cocinero EJ, Lesarri A, Écija P et al (2010) Conformational equilibria in vanillin and ethylvanillin. Phys Chem Chem Phys 12:12486. https://doi.org/10.1039/c0cp00585a

    Article  CAS  Google Scholar 

  53. Panicker CY, Varghese HT, Sajina K et al (2008) IR, Raman and ab-initio calcualtions of 2,6-dimethoxyphenol. Orient J Chem 24:973

    CAS  Google Scholar 

  54. Zhang L, Peslherbe GH, Muchall HM (2006) Ultraviolet absorption spectra of substituted phenols: a computational study†. Photochem Photobiol 82:324–331. https://doi.org/10.1562/2005-07-08-RA-605

    Article  CAS  Google Scholar 

  55. Plugatyr A, Nahtigal I, Svishchev IM (2006) Spatial hydration structures and dynamics of phenol in sub- and supercritical water. J Chem Phys 124:024507. https://doi.org/10.1063/1.2145751

    Article  Google Scholar 

  56. Roth W, Schmitt M, Jacoby C et al (1998) Double resonance spectroscopy of phenol(H2O)1–12: evidence for ice-like structures in aromate–water clusters? Chem Phys 239:1–9. https://doi.org/10.1016/S0301-0104(98)00252-3

    Article  CAS  Google Scholar 

  57. Jacoby C, Roth W, Schmitt M et al (1998) Intermolecular vibrations of phenol(H 2 O) 2-5 and phenol(D 2 O) 2-5 - d 1 studied by UV double-resonance spectroscopy and ab initio theory. J Phys Chem A 102:4471–4480. https://doi.org/10.1021/jp9806157

    Article  CAS  Google Scholar 

  58. Lüchow A, Spangenberg D, Janzen C et al (2001) Structure and energetics of phenol(H2O)n, nᅟ7: quantum Monte Carlo calculations and double resonance experiments. Phys Chem Chem Phys 3:2771–2780. https://doi.org/10.1039/b101779i

    Article  Google Scholar 

  59. Benoit DM, Clary DC (2000) Quantum simulation of phenol−water clusters. J Phys Chem A 104:5590–5599. https://doi.org/10.1021/jp994420q

    Article  CAS  Google Scholar 

  60. Bandyopadhyay I, Lee HM, Kim KS (2005) Phenol vs water molecule interacting with various molecules: σ-type, π-type, and χ-type hydrogen bonds, interaction energies, and their energy components. J Phys Chem A 109:1720–1728. https://doi.org/10.1021/jp0449657

    Article  CAS  Google Scholar 

  61. Gerhards M, Schmitt M, Kleinermanns K, Stahl W (1996) The structure of phenol(H 2 O) obtained by microwave spectroscopy. J Chem Phys 104:967–971. https://doi.org/10.1063/1.470820

    Article  CAS  Google Scholar 

  62. Dimitrova Y (2004) Ab initio and DFT studies of the vibrational spectra of hydrogen-bonded PhOH…(H2O)4 complexes. Spectrochim Acta A Mol Biomol Spectrosc 60:3049–3057. https://doi.org/10.1016/j.saa.2004.01.026

    Article  Google Scholar 

  63. Parthasarathi R, Subramanian V, Sathyamurthy N (2005) Hydrogen bonding in phenol, water, and phenol−water clusters. J Phys Chem A 109:843–850. https://doi.org/10.1021/jp046499r

    Article  CAS  Google Scholar 

  64. Ramondo F, Bencivenni L, Portalone G, Domenicano (1995) A effect of intermolecular O-H ⋯ O hydrogen bonding on the molecular structure of phenol: an ab initio molecular orbital study. Struct Chem 6:37–45 . https://doi.org/10.1007/BF02263526

  65. Wu R, Brutschy B (2004) Study on the structure and intra- and intermolecular hydrogen bonding of 2-methoxyphenol · (H2O)n (n=1,2). Chem Phys Lett 390:272–278. https://doi.org/10.1016/j.cplett.2004.04.023

    Article  CAS  Google Scholar 

  66. Pohl M, Schmitt M, Kleinermanns K (1991) Microscopic shifts of size-assigned p-cresol/H2O-cluster spectra. J Chem Phys 94:1717. https://doi.org/10.1063/1.459944

    Article  CAS  Google Scholar 

  67. Myszkiewicz G, Meerts WL, Ratzer C, Schmitt M (2005) The structure of 4-methylphenol and its water cluster revealed by rotationally resolved UV spectroscopy using a genetic algorithm approach. J Chem Phys 123:044304. https://doi.org/10.1063/1.1961615

    Article  Google Scholar 

  68. Biswal HS, Shirhatti PR, Wategaonkar S (2009) O−H···O versus O−H···S hydrogen bonding I: experimental and computational studies on the p -cresol·H 2 O and p -cresol·H 2 S complexes. J Phys Chem A 113:5633–5643. https://doi.org/10.1021/jp9009355

    Article  CAS  Google Scholar 

  69. Watanabe T, Ebata T, Tanabe S, Mikami N (1996) Size-selected vibrational spectra of phenol-(H 2 O) n ( n =1–4) clusters observed by IR–UV double resonance and stimulated Raman-UV double resonance spectroscopies. J Chem Phys 105:408–419. https://doi.org/10.1063/1.471917

    Article  Google Scholar 

  70. Ebata T, Fujii A, Mikami N (1998) Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. Int Rev Phys Chem 17:331–361. https://doi.org/10.1080/014423598230081

    Article  CAS  Google Scholar 

  71. Helm RM, Neusser HJ (1998) Highly resolved UV spectroscopy of clusters: isotope substitution studies of hydrogen-bonded phenol·water. Chem Phys 239:33–47. https://doi.org/10.1016/S0301-0104(98)00256-0

    Article  CAS  Google Scholar 

  72. Schütz M, Bürgi T, Leutwyler S, Fischer T (1993) Intermolecular bonding and vibrations of phenol·H2O (D2O). J Chem Phys 98:3763. https://doi.org/10.1063/1.464055

    Article  Google Scholar 

  73. Ahn D-S, Park S-W, Lee S, Kim B (2003) Effects of substituting group on the hydrogen bonding in phenol−H 2 O complexes: ab initio study. J Phys Chem A 107:131–139. https://doi.org/10.1021/jp021519f

    Article  CAS  Google Scholar 

  74. Gerhards M, Unterberg C, Kleinermanns K (2000) Structures of catechol(H2O)1,3 clusters in the S0 and D0 states. Phys Chem Chem Phys 2:5538–5544. https://doi.org/10.1039/b006744j

    Article  CAS  Google Scholar 

  75. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  76. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789

    Article  CAS  Google Scholar 

  77. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  78. Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119:1701–1714. https://doi.org/10.1021/jp508422u

    Article  CAS  Google Scholar 

  79. Pearson RG (2005) The principle of maximum hardness. Chemical hardness. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 99–124

    Chapter  Google Scholar 

  80. Salzner U, Baer R (2009) Koopmans’ springs to life. J Chem Phys 131:231101. https://doi.org/10.1063/1.3269030

    Article  Google Scholar 

  81. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793. https://doi.org/10.1063/1.1749394

    Article  CAS  Google Scholar 

  82. Xantheas SS (1994) Ab initio studies of cyclic water clusters (H 2 O) n , n =1–6. II. Analysis of many-body interactions. J Chem Phys 100:7523–7534. https://doi.org/10.1063/1.466846

    Article  CAS  Google Scholar 

  83. Tanabe S, Ebata T, Fujii M, Mikami N (1993) OH stretching vibrations of phenol—(H2O)n (n=1–3) complexes observed by IR-UV double-resonance spectroscopy. Chem Phys Lett 215:347–352. https://doi.org/10.1016/0009-2614(93)85726-5

    Article  CAS  Google Scholar 

  84. Balachandran V, Parimala K (2012) Vanillin and isovanillin: comparative vibrational spectroscopic studies, conformational stability and NLO properties by density functional theory calculations. Spectrochim Acta A Mol Biomol Spectrosc 95:354–368. https://doi.org/10.1016/j.saa.2012.03.087

    Article  CAS  Google Scholar 

  85. Bois C (1972) Structure de l’o-crésol. Acta Crystallogr B 28:25–31. https://doi.org/10.1107/S0567740872001815

    Article  CAS  Google Scholar 

  86. Bois C (1973) Structure du m-crésol. Acta Crystallogr B 29:1011–1017. https://doi.org/10.1107/S0567740873003778

    Article  CAS  Google Scholar 

  87. Bois C (1970) Structure du p-crésol à basse témperature. Acta Crystallogr B 26:2086–2092. https://doi.org/10.1107/S0567740870005411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Mutelet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesari, L., Canabady-Rochelle, L. & Mutelet, F. Computational study of phenolic compounds-water clusters. Struct Chem 29, 625–643 (2018). https://doi.org/10.1007/s11224-018-1081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1081-9

Keywords

Navigation