Skip to main content
Log in

Hard-Needle Elastomer in One Spatial Dimension

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We perform exact statistical mechanics calculations for a system of elongated objects (hard needles) that are restricted to translate along a line and rotate within a plane, and that interact via both excluded-volume steric repulsion and harmonic elastic forces between neighbors. This system represents a one-dimensional model of a liquid crystal elastomer, and has a zero-tension critical point that we describe using the transfer-matrix method. In the absence of elastic interactions, we build on previous results by Kantor and Kardar, and find that the nematic order parameter Q decays linearly with tension \(\boldsymbol{\sigma}\). In the presence of elastic interactions, the system exhibits a standard universal scaling form, with \(\boldsymbol{Q / \vert \sigma \vert}\) being a function of the rescaled elastic energy constant \(\boldsymbol{k / \vert \sigma \vert ^\Delta}\), where \(\boldsymbol \Delta\) is a critical exponent equal to 2 for this model. At zero tension, simple scaling arguments lead to the asymptotic behavior \(\boldsymbol{Q \sim k^{1/\Delta }}\), which does not depend on the equilibrium distance of the springs in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Notes

  1. We used \(\ell ^{-N}\) in the spatial measure so that Y is dimensionless. In classical statistical mechanics, it is usual to consider the measure in phase space \(d \mu = h^{-N} \prod _i dx_i d p_i\), with the inclusion of Planck’s constant h, where \(p_i\) is the momentum of particle i. This ensures a dimensionless partition function and agreement with the classical limit of an analogous quantum system. In our case, we could combine \(\ell\) with h so that the contribution from the momentum variables is also dimensionless.

  2. Note that Eq. (24) is valid for bulk particles. For boundary particles, \(< X_{k_i} > = (\sum _{\beta =1}^M \nu _{\beta \, \alpha ^*}X_{\beta })/(\sum _{\beta =1}^M \nu _{\beta \, \alpha ^*})\).

  3. The average spacing s can be calculated from a derivative of the free energy as \(s/\ell = \partial (\beta f) / \partial \,\tau\). For the hard-needle elastomer, this calculation results in \(s/\ell = -(1/\lambda _{\alpha ^*}) \partial \lambda _{\alpha ^*} / \partial \, \tau + a - \tau / \Lambda\). The first term yields the expected scaling behavior, whereas the last term provides important corrections when \(\Lambda \sim \tau ^2\).

References

  1. D.C. Mattis, The Many-body Problem: an Encyclopedia of Exactly Solved Models in One Dimension. World Scientific (1992)

  2. S.R. Salinas, Introduction to Statistical Physics. Springer (2001)

  3. J. Cardy, Scaling and Renormalization in Statistical Physics. Cambridge university press, (1996)

  4. Y. Kantor, M. Kardar, One-dimensional gas of hard needles. Phys. Rev. E 79, 041109 (2009). https://doi.org/10.1103/PhysRevE.79.041109

    Article  ADS  Google Scholar 

  5. Y. Kantor, M. Kardar, Universality in the jamming limit for elongated hard particles in one dimension. Europhys. Lett. 87(6), 60002 (2009). https://doi.org/10.1209/0295-5075/87/60002

    Article  ADS  Google Scholar 

  6. J. Lebowitz, J. Percus, J. Talbot, On the orientational properties of some one-dimensional model systems. J. Stat. Phys. 49, 1221–1234 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J.J. Arenzon, D. Dhar, R. Dickman, Glassy dynamics and hysteresis in a linear system of orientable hard rods. Phys. Rev. E 84, 011505 (2011). https://doi.org/10.1103/PhysRevE.84.011505

    Article  ADS  Google Scholar 

  8. R.L. Vink, The isotropic-to-nematic transition in a two-dimensional fluid of hard needles: a finite-size scaling study. Eur. Phys. J. B 72(2), 225–231 (2009)

    Article  ADS  Google Scholar 

  9. S. Saryal, D. Dhar, Exact results for interacting hard rigid rotors on a d-dimensional lattice. J. Stat. Mech: Theory Exp. 2022(4), 043204 (2022). https://doi.org/10.1088/1742-5468/ac6038

    Article  MathSciNet  MATH  Google Scholar 

  10. J.U. Klamser, T. Sadhu, D. Dhar, Sequence of phase transitions in a model of interacting rods. Phys. Rev. E 106, 052101 (2022). https://doi.org/10.1103/PhysRevE.106.L052101

    Article  ADS  MathSciNet  Google Scholar 

  11. S.R. Salinas, On the one-dimensional compressible ising model. J. Phys. A: Math. Nucl. Gen. 6(10), 1527 (1973). https://doi.org/10.1088/0305-4470/6/10/011

    Article  ADS  Google Scholar 

  12. D.B. Liarte, S.R. Salinas, C.S.O. Yokoi, Compressible sherrington-kirkpatrick spin-glass model. J. Phys. A: Math. Theor. 42(20), 205002 (2009). https://doi.org/10.1088/1751-8113/42/20/205002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Warner, E.M. Terentjev, Liquid Crystal Elastomers. Oxford University Press, Oxford (2003)

  14. P.G. De Gennes, Possibilites offertes par la reticulation de polymeres en presence d’un cristal liquide. Phys. Lett. A 28(11), 725–726 (1969). https://doi.org/10.1016/0375-9601(69)90584-2

    Article  ADS  Google Scholar 

  15. J.V. Selinger, B.R. Ratna, Isotropic-nematic transition in liquid-crystalline elastomers: lattice model with quenched disorder. Phys. Rev. E 70, 041707 (2004). https://doi.org/10.1103/PhysRevE.70.041707

    Article  ADS  Google Scholar 

  16. F. Ye, T. Lubensky, Phase diagrams of semisoft nematic elastomers. J. Phys. Chem. B 113(12), 3853–3872 (2009)

    Article  Google Scholar 

  17. D.B. Liarte, S.R. Salinas, C.S.O. Yokoi, Elastic maier-saupe-zwanzig model and some properties of nematic elastomers. Phys. Rev. E 84, 011124 (2011). https://doi.org/10.1103/PhysRevE.84.011124

    Article  ADS  Google Scholar 

  18. D.B. Liarte, Tricritical behavior of soft nematic elastomers. Phys. Rev. E 88, 062144 (2013). https://doi.org/10.1103/PhysRevE.88.062144

    Article  ADS  Google Scholar 

  19. D.B. Liarte, S.R. Salinas, World Scientific, Singapore p. 64 (2014)

  20. A. Petri, D.B. Liarte, S.R. Salinas, Uniaxial and biaxial structures in the elastic maier-saupe model. Phys. Rev. E 97, 012705 (2018). https://doi.org/10.1103/PhysRevE.97.012705

    Article  ADS  Google Scholar 

  21. T. Benmessabih, B. Bakhti, M.R. Chellali, Thermodynamics of interacting hard rods on a lattice. Braz. J. Phys. 52(4), 132 (2022)

    Article  ADS  Google Scholar 

  22. S. Saryal, J.U. Klamser, T. Sadhu, D. Dhar, Multiple singularities of the equilibrium free energy in a one-dimensional model of soft rods. Phys. Rev. Lett. 121, 240601 (2018). https://doi.org/10.1103/PhysRevLett.121.240601

    Article  ADS  Google Scholar 

  23. L.M. Casey, L.K. Runnels, Model for correlated molecular rotation. J. Chem. Phys. 51(11), 5070–5089 (1969). https://doi.org/10.1063/1.1671905

  24. P. Gurin, S. Varga, Towards understanding the ordering behavior of hard needles: analytical solutions in one dimension. Phys. Rev. E 83, 061710 (2011). https://doi.org/10.1103/PhysRevE.83.061710

    Article  ADS  Google Scholar 

  25. P. Gurin, S. Varga, Anomalous phase behavior of quasi-one-dimensional attractive hard rods. Phys. Rev. E 106, 044606 (2022). https://doi.org/10.1103/PhysRevE.106.044606

    Article  ADS  MathSciNet  Google Scholar 

  26. J.P. Sethna, M.K. Bierbaum, K.A. Dahmen, C.P. Goodrich, J.R. Greer, L.X. Hayden, J.P. Kent-Dobias, E.D. Lee, D.B. Liarte, X. Ni, K.N. Quinn, A. Raju, D.Z. Rocklin, A. Shekhawat, S. Zapperi, Deformation of crystals: connections with statistical physics. Annu. Rev. Mater. Res. 47(1), 217–246 (2017). https://doi.org/10.1146/annurev-matsci-070115-032036

    Article  Google Scholar 

  27. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  28. P.F. Bienzobaz, N. Xu, A.W. Sandvik, Modulated phases in a three-dimensional maier-saupe model with competing interactions. Phys. Rev. E 96, 012137 (2017). https://doi.org/10.1103/PhysRevE.96.012137

    Article  ADS  Google Scholar 

  29. E.S. Nascimento, A. Petri, S.R. Salinas, Modulated structures in a lebwohl-lasher model with chiral interactions. Physica A 531, 121592 (2019). https://doi.org/10.1016/j.physa.2019.121592

    Article  MathSciNet  MATH  Google Scholar 

  30. P.-G. DeGennes, J. Prost, The Physics of Liquid Crystals. Oxford university press (1995)

  31. S. Feng, M.F. Thorpe, E. Garboczi, Effective-medium theory of percolation on central-force elastic networks. Phys. Rev. B 31(1), 276–280 (1985)

    Article  ADS  Google Scholar 

  32. D.B. Liarte, X. Mao, O. Stenull, T.C. Lubensky, Jamming as a multicritical point. Phys. Rev. Lett. 122, 128006 (2019). https://doi.org/10.1103/PhysRevLett.122.128006

    Article  ADS  Google Scholar 

  33. A.J. Liu, S.R. Nagel, The jamming transition and the marginally jammed solid. Ann. Rev. Condens. Matter Phys. 1(1), 347–369 (2010) https://doi.org/10.1146/annurev-conmatphys-070909-104045

  34. D.B. Liarte, S.J. Thornton, E. Schwen, I. Cohen, D. Chowdhury, J.P. Sethna, Universal scaling for disordered viscoelastic matter near the onset of rigidity. Phys. Rev. E 106, 052601 (2022). https://doi.org/10.1103/PhysRevE.106.L052601

    Article  ADS  Google Scholar 

Download references

Acknowledgements

DBL thanks the financial support through FAPESP grants # 2021/14285-3 and # 2022/09615-7. AP is grateful to ICTP-SAIFR for a 2-month visiting grant.

Funding

This work was partially supported by FAPESP, through grants # 2021/14285-3 and # 2022/09615-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo B. Liarte.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liarte, D.B., Petri, A. & Salinas, S.R. Hard-Needle Elastomer in One Spatial Dimension. Braz J Phys 53, 73 (2023). https://doi.org/10.1007/s13538-023-01289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01289-7

Keywords

Navigation