Skip to main content
Log in

Performance Analysis of Hetero-dielectric-Based MoS2 FET with Respect to Different Channel Lengths and High K-Values for Dielectric-Modulated Biosensor Application

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, hetero-dielectric-based MoS2FET device is designed with different channel lengths and different high-K dielectric materials for the application of a dielectric-modulated biosensor. The device performance has also been compared with a conventional MoS2FET transistor having SiO2 as an insulation layer. From the analysis, it is observed that the MoS2FET-based hetero-dielectric is having better performance as compared to MoS2/SiO2FET transistor. Similarly, when the dielectric K-values are increased, the hetero-dielectric MoS2FET transistor performance is further increased due to high gate control and low leakage current. A dielectric-modulated MoS2FET biosensor for different values of dry protein dielectric constants (K = 1 to 6) is also designed, and their sensitivity parameters are analysed. It is observed that when the dielectric constant and the channel length of the proposed device increase, the sensitivity of the biosensor also increases due to enhanced drive current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279

    Article  ADS  Google Scholar 

  2. T. Onodera et al., A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J. Phys. Chem. B 113(52), 16526–16536 (2009). https://doi.org/10.1021/jp9069866

    Article  Google Scholar 

  3. A. Meersha, B. Sathyajit, M. Shrivastava, A systematic study on the hysteresis behaviour and reliability of MoS2 FET. Proc. - 2017 30th Int. Conf. VLSI Des. 2017 16th Int. Conf. Embed. Syst. VLSID 2017, pp. 437–440 (2017). https://doi.org/10.1109/VLSID.2017.67

  4. N.A. Jamil, N.B. Khairulazdan, P.S. Menon, A.R. Md Zain, A.A. Hamzah, B.Y. Majlis, Graphene-MoS 2 SPR-based biosensor for urea detection. ISESD 2018 - Int. Symp. Electron. Smart Devices Smart Devices Big Data Anal. Mach. Learn., pp. 1–4 (2019). https://doi.org/10.1109/ISESD.2018.8605491

  5. T. Haque, H.K. Rouf, Sensitivity enhanced surface plasmon resonance (SPR) sensors with MoS2/graphene hybrid overlayer. 3rd IEEE Int. Conf. Telecommun. Photonics, ICTP 2019, pp. 1–4 (2019). https://doi.org/10.1109/ICTP48844.2019.9041808

  6. T. Gokuraju, K. Ghosh, Sensitivity assessment of nanoscale double gate MOSFET based biosensor using numerical simulation. Proc. - 2020 6th IEEE Int. Symp. Smart Electron. Syst. iSES 2020, pp. 48–50 (2020). https://doi.org/10.1109/iSES50453.2020.00022

  7. V.P. Kumar, D.K. Panda, Review—next generation 2D material molybdenum disulfide (MoS 2 ): properties, applications and challenges. ECS J. Solid State Sci. Technol. 11(3), 033012 (2022). https://doi.org/10.1149/2162-8777/ac5a6f

  8. K.A. Khair, S.S. Ahmed, “Role of interfacial and intrinsic coulomb impurities in monolayer MoS2 FETs”, 2018 IEEE 13th Nanotechnol. Mater. Devices Conf. NMDC 2018(1610474), 31–34 (2019). https://doi.org/10.1109/NMDC.2018.8605839

    Article  Google Scholar 

  9. P. Zhao, A. Azcatl, P. Bolshakov-Barrett, R.M. Wallace, C.D. Young, P.K. Hurley, Top-gated MoS2 capacitors and transistors with high-k dielectrics for interface study. IEEE Int. Conf. Microelectron. Test Struct. vol. 2016-May, pp. 172–175, (2016). https://doi.org/10.1109/ICMTS.2016.7476201

  10. K.E. Kaharudin, F. Salehuddin, N. Soin, A.S.M. Zain, M.N.I.A. Aziz, I. Ahmad, Electrical characterization of different high-k dielectrics with tungsten silicide in vertical double gate nmos structure. ARPN J. Eng. Appl. Sci. 11(21), 12328–12335 (2016)

    Google Scholar 

  11. T. Kidd, A. O’Shea, K. Boyle, J. Wallace, L. Strauss, Synthesis of freestanding HfO2 nanostructures. Nanoscale Res. Lett. 6(1), 1–6 (2011). https://doi.org/10.1186/1556-276X-6-294

    Article  Google Scholar 

  12. Z. Li, Z. Feng, Y. Xu, Q. Feng, W. Zhu, D. Chen, Metal – oxide – semiconductor field-effect phototransistor with hafnium oxide gate dielectric process. 42(4), 545–548 (2021).

  13. C.E. Glaser, A.T. Binder, L. Yates, A.A. Allerman, D.F. Feezell, R.J. Kaplar, Analysis of ALD dielectric leakage in bulk GaN MOS devices. 2021 IEEE 8th Work. Wide Bandgap Power Devices Appl. WiPDA 2021 - Proc., pp. 268–272 (2021). https://doi.org/10.1109/WiPDA49284.2021.9645149

  14. X. Huang, Y. Yao, S. Peng, D. Zhang, J. Shi, Z. Jin, Effects of charge trapping at the MoS2-SiO2 interface on the stability of subthreshold swing of MoS2 field effect transistors. Materials (Basel) 13(13), 1–8 (2020). https://doi.org/10.3390/ma13132896

    Article  ADS  Google Scholar 

  15. T. Goudon, V. Miljanović, C. Schmeiser, On the Shockley-read-hall model: generation-recombination in semiconductors. SIAM J. Appl. Math. 67(4), 1183–1201 (2007). https://doi.org/10.1137/060650751

    Article  MathSciNet  MATH  Google Scholar 

  16. C.L. Huang, N.D. Arora, Measurements and modeling of MOSFET I-V characteristics with poly silicon depletion effect. IEEE Trans. Electron. Devices 40(12), 2330–2337 (1993). https://doi.org/10.1109/16.249483

    Article  ADS  Google Scholar 

  17. I.V. Ivanov, A.G. Kozlov, Hole mobility model for 6H-SiC thermoresistive sensors simulation. 2019 Int. Sib. Conf. Control Commun. SIBCON 2019 - Proc., pp. 0–4 (2019). https://doi.org/10.1109/SIBCON.2019.8729619

  18. A. Kumar, Leakage current controlling mechanism using high K dielectric + metal gate. Int. J. Inf. Technol. Knowl. 5(1), 191–194 (2012)

    Google Scholar 

  19. J.G. Kang, Y. Il Kim, D. Won Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mater. Sci. Semicond. Process. 40(3), 737–743 (2015). https://doi.org/10.1016/j.mssp.2015.07.050

  20. J. Kwo et al., Properties of high κ gate dielectrics Gd2O3 and Y2O3 for Si. J. Appl. Phys. 89(7), 3920–3927 (2001). https://doi.org/10.1063/1.1352688

    Article  ADS  Google Scholar 

  21. H. Ilatikhameneh, F.W. Chen, R. Rahman, G. Klimeck, “Electrically doped 2D material tunnel transistor”, 18th Int. Work. Comput. Electron. IWCE 2015(1), 2–4 (2015). https://doi.org/10.1109/IWCE.2015.7301966

    Article  Google Scholar 

  22. A. Singh, S. Lee, H. Lee, H. Watanabe, “Dielectric constant and van der Waals interlayer interaction of MoS2-graphene heterostructures”, 15th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. NEMS 2020(1), 490–494 (2020). https://doi.org/10.1109/NEMS50311.2020.9265634

    Article  Google Scholar 

  23. A. Islam, X. Liu, B. Odhner, M.A. Tupta, P.X.L. Feng, “Investigation of electrostatic gating in two-dimensional transitional metal dichalcogenide (TMDC) field effect transistors (FETs)”, 2018 IEEE 13th Nanotechnol. Mater. Devices Conf. NMDC 2018, 1–4 (2019). https://doi.org/10.1109/NMDC.2018.8605859

    Article  Google Scholar 

  24. H.P. Palani Velayuda Shanmugasundram, E. Jayamani, K.H. Soon, A comprehensive review on dielectric composites: classification of dielectric composites. Renew. Sustain. Energy Rev. 157(January), 112075 (2022). https://doi.org/10.1016/j.rser.2022.112075

  25. S. Prasanna Kumar, P. Sandeep, S. Choudhary, Changes in transconductance(gm) and Ion/Ioff with high-K dielectrics in MX2 monolayer 10 nm channel double gate n-MOSFET. Superlattices Microstruct. 111, 642–648 (2017). https://doi.org/10.1016/j.spmi.2017.07.021

  26. M.A. Mahmud, S. Subrina, A two dimensional analytical model of drain to source current and subthreshold slope of a triple material double gate MOSFET. 8th Int. Conf. Electr. Comput. Eng. Adv. Technol. a Better Tomorrow, ICECE 2014, pp. 92–95, (2015). https://doi.org/10.1109/ICECE.2014.7026926

  27. R. Lethiecq, M. Bawedin, P. Galy, Compact MOS structure & design for Ion-Ioff thermal control in 28nm UTBB FD-SOI CMOS technology. 17th IEEE Int. Conf. IC Des. Technol. ICICDT 2019 - Proc., pp. 0–3, (2019). https://doi.org/10.1109/ICICDT.2019.8790864

  28. H. Bencherif, A. Yousfi, L. Dehimi, F. Pezzimenti, F.G.D. Corte, Analysis of Al2O3high-k gate dielectric effect on the electrical characteristics of a 4H-SiC low-power MOSFET. Proc. - 2019 1st Int. Conf. Sustain. Renew. Energy Syst. Appl. ICSRESA 2019, pp. 8–11 (2019). https://doi.org/10.1109/ICSRESA49121.2019.9182412

  29. P. Singh, B.P. Pandey, With variation of oxide thickness and channel. 2018 5th IEEE Uttar Pradesh Sect. Int. Conf. Electr. Electron. Comput. Eng., pp. 1–4, (2018).

  30. S.M.H. Rizvi, B. Mazhari, Investigation of traps in thin-film organic semiconductors using differential analysis of steady-state current-voltage characteristics. IEEE Trans. Electron Devices 65(8), 3430–3437 (2018). https://doi.org/10.1109/TED.2018.2849346

    Article  ADS  Google Scholar 

  31. L. Li, C. Li, Z. Zhang, E. Alexov, On the dielectric ‘constant’ of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput. 9(4), 2126–2136 (2013). https://doi.org/10.1021/ct400065j

    Article  Google Scholar 

  32. M. Amin, J. Küpper, Variations in proteins dielectric constants. ChemistryOpen 9(6), 691–694 (2020). https://doi.org/10.1002/open.202000108

    Article  Google Scholar 

  33. N.N. Reddy, Dielectric modulated double gate hetero dielectric TFET (DM-DGH-TFET) biosensors : gate misalignment analysis on sensitivity.

  34. M. Graphene et al., Sensitivity improved SPR biosensor based on the. 35(1), 82–87, (2017).

Download references

Acknowledgements

The authors acknowledge VIT-AP University for providing the necessary facilities for carrying out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equal contribution.

Corresponding author

Correspondence to Deepak Kumar Panda.

Ethics declarations

The manuscript is prepared as per the ethical standard of the journal.

Consent to Participate

Not applicable.

Consent for Publication

The authors have given consent for publication as per the journal policy.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.P., Panda, D.K. Performance Analysis of Hetero-dielectric-Based MoS2 FET with Respect to Different Channel Lengths and High K-Values for Dielectric-Modulated Biosensor Application. Braz J Phys 53, 68 (2023). https://doi.org/10.1007/s13538-023-01285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01285-x

Keywords

Navigation