Skip to main content

Impact of Channel Parameters on the Performance of Dielectrically Modulated JL-DG-MOSFET Biosensor

  • Conference paper
  • First Online:
Advances in VLSI and Embedded Systems

Abstract

In this work, we intensively analyzed the performance of junctionless (JL) double-gate (DG) MOSFET for biosensing applications. The dielectric modulation technique has been to detect the biomolecules. Drain current sensitivity (ΔID) and threshold voltage sensitivity (ΔVth) are taken as sensitivity metrics for biomolecule detection. It is observed that JL-DG-MOSFET gives a very good ΔID in the order of 1012. Further, the impact of channel parameters like channel thickness (TC) and channel length (LC) on the sensitivity metrices has also been examined. It is found that downscaling of TC and upscaling of LC improves the threshold voltage sensitivity. However, we observed a peak at LC = 150 nm for drain current sensitivity. Hence, a lower TC (= 8 nm) and LC (= 150 nm) results in better sensitivities and thus can be used for designing JL-DG-FET based biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhol, K., Jena, B., Nanda, U., Tayal, S., & Jain, A. K. (2021) Novel architecture in gate all-around (GAA) MOSFET with High-k dielectric for biomolecule detection. In: High-K materials in multi-gate FET devices, edited volume, CRC Press, Boca Raton, pp. 131–140. https://doi.org/10.1201/9781003121589-8.

  2. Vu, C. -A., Chen, W. -Y. (2019). Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors, 19, 4214

    Google Scholar 

  3. Pantelopoulos, A., & Bourbakis, N. G. (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, pp. 1–12.

    Google Scholar 

  4. Bunney, J., Williamson, S., Atkin, D., Jeanneret, M., Cozzolino, D., Chapman, J., Power, A., & Chandra, S. (2017). The use of electrochemical biosensors in food analysis. Curr Res Nutr Food Sci, 5, 183–195.

    Article  Google Scholar 

  5. Kanungo, S., Majumdar, B., Mukhopadhyay, S., Som, D., & Rahamam, H. (2020). Investigation on the effects of substrate, back-gate bias and front-gate engineering on the performance of DMTFET based biosensors. IEEE Sensors Journal, 20, 10405–10414.

    Article  Google Scholar 

  6. Im, H., Huang, X.-J., Gu, B., & Choi, Y.-K. (2007) A dielectric-modulated field-effect transistor for bio-sensing. Nature Nanotechnology, 2, 430–434

    Google Scholar 

  7. Kim, C. -H., Jung, C., Park, H. G., & Choi, Y.-K. (2008) Novel dielectric-modulated field-effect transistor for label-free DNA detection. Biochip Journal, 2, 127–134

    Google Scholar 

  8. Im, M., Ahn, J.-H., Han, J.-W., Park, T. J., Lee, S. Y., & Choi, Y.-K. (2011). Development of a point-of-care testing platform with a nanogap embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sensor Journal, 11, 351–360.

    Article  Google Scholar 

  9. Gu, B., Park, T. J., Ahn, J.-H., Huang, X. -J., Lee, S. Y., & Choi, Y. –K. (2009) Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small, 5, 2407–2412

    Google Scholar 

  10. Choi, J.-M., Han, J.-W., Choi, S.-J., & Choi, Y.-K. (2010). Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Transactions on Electron Devices, 57, 3477–3484.

    Article  Google Scholar 

  11. Kim, C. –H., Ahn, J.-H., Lee, K.-B., Jung, C., Park, H. G., & Choi, Y.-K. (2012). A new sensing metric to reduce data fluctuations in a nanogap-embedded field-effect transistor biosensor. IEEE Transactions Electron Devices, 59, 2815–2831.

    Google Scholar 

  12. Choi, Y.-K.., Kim, C.-H., Ahn, J.-H., Kim, J.-Y., & Kim, S. (2012). Dielectric detection using biochemical assays. In Point-of-Care Diagnostics on a Chip. Biological and Medical Physics, Biomedical Engineering, edited volume. Springer, Berlin, Heidelberg, pp. 87–123. https://doi.org/10.1007/978-3-642-29268-2_5.

  13. Chen, X., Guo, Z., Yang, G.-M., Li, J., Li, M.-Q., Liu, J.-H., & Huang, X.-J. (2010). Electrical nanogap devices for biosensing. Materialstoday, 13, 28–41

    Google Scholar 

  14. Zhou, X. (2000). Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFET’s) with gate-material engineering. IEEE Transactions on Electron Devices, 47, 113–120.

    Article  Google Scholar 

  15. Ahn, J.-H., Choi, S.-J., Han, J.-W., Park, T. J., Lee, S. Y., & Choi, Y.-K. (2010). Double-gate nanowire field effect transistor for a biosensor. Nano Letters, 10, 2934–2938.

    Article  Google Scholar 

  16. Ahn, J.-H., Choi, S.-J., Han, J.-W., Park, T. J., Lee, S. Y., & Choi, Y.-K. (2010). A nanogap-embedded nanowire field effect transistor for sensor applications: Immunosensor and humidity sensor. In Proc 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp 1301–1303.

    Google Scholar 

  17. Shafi, N., Parmaar, J. S., Porwal, A., Bhat, A. M., Sahu, C., & Periasamy, C. (2021). Gate all around junctionless dielectric modulated BioFET based hybrid biosensor. SILICON, 13, 2041–2052.

    Article  Google Scholar 

  18. Shafi, N., Sahu, C., & Periasamy, C. (2019). Fabrication and pH sensitivity analysis of in-situ doped polycrystalline silicon thin-film junctionless BioFET. IEEE Electron Device Letters, 40, 997–1000.

    Article  Google Scholar 

  19. Parihar, M. S., Ghosh, D., & Kranti, A. (2013). Ultra Low power junctionless MOSFETs for subthreshold logic applications. IEEE Transactions on Electron Devices, 60, 1540–1546.

    Article  Google Scholar 

  20. Tayal, S., & Nandi, A. (2018). Interfacial layer dependence of High-K gate stack based Conventional trigate FinFET concerning analog/RF performance. In: 2018 4th International Conference on Devices, Circuits and Systems (ICDCS), pp. 305–308. https://doi.org/10.1109/ICDCSyst.2018.8605172.

  21. Tayal, S., & Nandi, A. (2017). Comparative analysis of High-K gate stack based conventional & junctionless FinFET. In: 2017 14th IEEE India Council International Conference (INDICON), pp. 1–4. https://doi.org/10.1109/INDICON.2017.8487675.

  22. Sentaurus Device User Guide, Synopsys Inc., http://www.synopsys.com.

  23. Dwivedi, P., & Kranti, A. (2017). Applicability of transconductance-to-current ratio (gm/IDS) as a sensing metric for tunnel FET biosensors. IEEE Sensors Journal, 17, 1030–1036.

    Article  Google Scholar 

  24. Sarkar, D., Gossner, H., Hansch, W., & Banerjee, K. (2013). Impact-ionization field-effect-transistor based biosensors for ultra-sensitive detection of biomolecules. Applied Physics Letters, 102, 203110.

    Article  Google Scholar 

  25. Song, Y. S., Kim, J. H., Kim, G., Kim, H.-M., Kim, S., & Park, B.-G. (2021). Improvement in self-heating characteristic by incorporating hetero-gate-dielectric in gate-all-around MOSFETs. IEEE Journal of the Electron Devices Society, 9, 36–41.

    Article  Google Scholar 

  26. Song, Y. S., Kim, S., Kim, G., Kim, H., Lee, J. -H., Kim, J. H., & Park, B. -G. (2021). Improvement of self-heating effect in Ge vertically stacked GAA nanowire pMOSFET by utilizing Al2O3 for high-performance logic device and electrical/thermal co-design. Japanese Journal of Applied Physics, 60, SCCE04–1-SCCE04–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Tayal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, J.P., Bhattacharya, S., Tayal, S., Leo Joseph, L.M.I., Song, Y.S., Ajayan, J. (2023). Impact of Channel Parameters on the Performance of Dielectrically Modulated JL-DG-MOSFET Biosensor. In: Darji, A.D., Joshi, D., Joshi, A., Sheriff, R. (eds) Advances in VLSI and Embedded Systems. Lecture Notes in Electrical Engineering, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-19-6780-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6780-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6779-5

  • Online ISBN: 978-981-19-6780-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics