Skip to main content
Log in

A Simpler Lotka-Volterra Model Under Microplastic Particles Influence

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The global increase in consumption of plastics has caused serious environmental problems. When discarded in nature, these materials degrade into microplastic particles, which have spread around the world and caused serious harm to different ecosystems. For instance, their presence in living organisms can alter predator-prey dynamics. Huang et al. [1] successfully applied a modified Lotka-Volterra model to study the impact of microplastic particles on population dynamics of predators and preys. Here, we propose to simplify their model, reducing its number of parameters without compromising its descriptive and predictive power. Also, we used time-varying intraspecific coefficients and solved analytically particular situations characterized by extreme effects on predatory performance, in addition to assigning a different meaning to the parameters removed from the original model. In addition, we have presented two important characteristic times related to the faster accumulation of microplastic particles in predators than in prey. This simpler description should be used to avoid misleading comparison between systems with microplastic particles and the ones free of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Q. Huang, Y. Lin, Q. Zhong, F. Ma, Y. Zhang, The impact of microplastic particles on population dynamics of predator and prey: Implication of the lotka-volterra model. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

  2. Y. Shashoua, Conservation of Plastics. Routledge, London. (2012). https://doi.org/10.4324/9780080878782

  3. R.C. Hale, M.E. Seeley, M.J. LaGuardia, L. Mai, E.Y. Zeng, A global perspective on microplastics. J. Geophys. Res. Oceans 125(1), 2018–014719 (2020) https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JC014719, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JC014719. https://doi.org/10.1029/2018JC014719. e2018JC014719 2018JC014719

  4. J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015)

    Article  ADS  Google Scholar 

  5. J. Boucher, D. Friot, Primary Microplastics in the Oceans: a Global Evaluation of Sources vol. 10. Iucn Gland, Switzerland. (2017). https://doi.org/10.2305/IUCN.CH.2017.01.en

  6. B. Singh, N. Sharma, Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 93(3), 561–584 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.11.008

    Article  Google Scholar 

  7. J.P.G.L. Frias, R. Nash, Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 138, 145–147 (2019). https://doi.org/10.1016/j.marpolbul.2018.11.022

    Article  Google Scholar 

  8. D. Barcelo, Microplastics analysis. MethodsX 7, (2020)

  9. T. Galloway, C. Lewis, Marine microplastics. Curr. Biol. 27(11), 445–446 (2017)

    Article  Google Scholar 

  10. V. Tirelli, G. Suaria, A. Lusher, Microplastics in polar samples. Handbook of Microplastics in the Environment, 1–42 (2020)

  11. A.C. Johnson, H. Ball, R. Cross, A.A. Horton, M.D. Jurgens, D.S. Read, J. Vollertsen, C. Svendsen, Identification and quantification of microplastics in potable water and their sources within water treatment works in england and wales. Environ. Sci. Technol. 54(19), 12326–12334 (2020)

    Article  ADS  Google Scholar 

  12. F. Corradini, F. Casado, V. Leiva, E. Huerta-Lwanga, V. Geissen, Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci. Total Environ. 752, 141917 (2021). https://doi.org/10.1016/j.scitotenv.2020.141917

  13. R. Harne, A. Rokde, K. Jadav, J.M. Chitariya, A. Sengar, Studies on plastic bezoar ingestion in free range axis deer in summer. Journal of Animal Research 9(2), 383–386 (2019)

    Google Scholar 

  14. A.A. de Souza Machado, W. Kloas, C. Zarfl, S. Hempel, M.C. Rillig, Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 24(4), 1405–1416 (2018)

    Article  ADS  Google Scholar 

  15. K. Wang, L. Zhu, L. Rao, L. Zhao, Y. Wang, X. Wu, H. Zheng, X. Liao, Nano- and micro-polystyrene plastics disturb gut microbiota and intestinal immune system in honeybee. Sci. Total Environ. 842, 156819 (2022). https://doi.org/10.1016/j.scitotenv.2022.156819

  16. K.D. Cox, G.A. Covernton, H.L. Davies, J.F. Dower, F. Juanes, S.E. Dudas, Human consumption of microplastics. Environ. Sci. Technol. 53(12), 7068–7074 (2019)

    Article  ADS  Google Scholar 

  17. M. Pirsaheb, H. Hossini, P. Makhdoumi, Review of microplastic occurrence and toxicological effects in marine environment: Experimental evidence of inflammation. Process Saf. Environ. Prot. 142, 1–14 (2020). https://doi.org/10.1016/j.psep.2020.05.050

    Article  Google Scholar 

  18. L. Schöpfer, R. Menzel, U. Schnepf, L. Ruess, S. Marhan, F. Brümmer, H. Pagel, E. Kandeler, Microplastics effects on reproduction and body length of the soil-dwelling nematode caenorhabditis elegans. Front. Environ. Sci. 8, 41 (2020)

    Article  Google Scholar 

  19. S. Xu, J. Ma, R. Ji, K. Pan, A.-J. Miao, Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 703, 134699 (2020). https://doi.org/10.1016/j.scitotenv.2019.134699

  20. E. Besseling, B. Wang, M. Lürling, A.A. Koelmans, Nanoplastic affects growth of s. obliquus and reproduction of d. magna. Environ. Sci. Technol. 48(20), 12336–12343 (2014)

  21. K. Tallec, A. Huvet, C. Di Poi, C. González-Fernández, C. Lambert, B. Petton, N. Le Goïc, M. Berchel, P. Soudant, I. Paul-Pont, Nanoplastics impaired oyster free living stages, gametes and embryos. Environ. Pollut. 242, 1226–1235 (2018). https://doi.org/10.1016/j.envpol.2018.08.020

    Article  Google Scholar 

  22. Q. Yu, X. Hu, B. Yang, G. Zhang, J. Wang, W. Ling, Distribution, abundance and risks of microplastics in the environment. Chemosphere 249, 126059 (2020). https://doi.org/10.1016/j.chemosphere.2020.126059

  23. P. Farrell, K. Nelson, Trophic level transfer of microplastic: Mytilus edulis (l.) to carcinus maenas (l.). Environ. Pollut. 177, 1–3 (2013). https://doi.org/10.1016/j.envpol.2013.01.046

  24. S. Zhao, J.E. Ward, M. Danley, T.J. Mincer, Field-based evidence for microplastic in marine aggregates and mussels: implications for trophic transfer. Environ. Sci. Technol. 52(19), 11038–11048 (2018)

    Article  ADS  Google Scholar 

  25. C. Van Colen, B. Vanhove, A. Diem, T. Moens, Does microplastic ingestion by zooplankton affect predator-prey interactions? an experimental study on larviphagy. Environ. Pollut. 256, 113479 (2020). https://doi.org/10.1016/j.envpol.2019.113479

  26. T.G. Hallam, J.T. de Luna, Effects of toxicants on populations: A qualitative: Approach iii. environmental and food chain pathways. J. Theor. Biol. 109(3), 411–429 (1984). https://doi.org/10.1016/S0022-5193(84)80090-9

  27. L.S. Santos, J.R. Alcarás, L.M. Costa, M.M.R. Simões, A.S. Martinez, Analytical solutions of microplastic particles dispersion using the Lotka-Volterra model with time-varying intraspecies coefficients. Math. Comput. Appl. 27(4), (2022). https://doi.org/10.3390/mca27040066

Download references

Funding

A. S. M. received support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant No. 309851/2018-1) and NAP-FisMed.

Author information

Authors and Affiliations

Authors

Contributions

A.S.M. obtained the analytical solutions, designed the research, wrote the manuscript and is responsible for supervision, project administration and funding acquisition. L.S.S. verified analytical solutions, wrote the numerical and validated the code, and wrote the first version of the manuscript. The authors designed the research, reviewed and edited the manuscript and agreed to its current version.

Corresponding author

Correspondence to Alexandre Souto Martinez.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares dos Santos, L., Souto Martinez, A. A Simpler Lotka-Volterra Model Under Microplastic Particles Influence. Braz J Phys 53, 47 (2023). https://doi.org/10.1007/s13538-023-01264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01264-2

Keywords

Navigation