Skip to main content
Log in

Removal of Soot, CO, NOx, and PM by Ag-Based Nanomaterials: A Review

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Air pollution is a major environmental threat nowadays. The automotive vehicles and stationery (industry) sources, producing pollutants such as soot, CO, CO2, and NOx, are the major cause of it. Various health issues such as cardiovascular disease, inhaling problems, and eye irritation are caused by these pollutants. The controlling of pollutants is necessary to protect the environment and human beings. In this study, a comparative analysis of silver-doped ceria, silver-doped zirconia, silver-doped silica, and silver-doped alumina catalysts has been discussed based on their structural property, surface contact property, the effect of size on reactivity, and methods of preparation. Silver-based materials provide low-temperature combustion of soot, high thermal stability, and good surface contact property to the catalyst and it is economical than Pt and Au which are being effectively used for soot combustion activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. IEA, Global car sales by key markets, 2005–2020 – Charts – Data & Statistics - IEA. Global car sales by key markets, 2005–2020. (2020). https://www.iea.org/data-and-statistics/charts/global-car-sales-by-key-markets-2005-2020

  2. State-wise Car Sales Data - April 2018 to March 2019 (FY19) - Team-BHP. https://www.team-bhp.com/forum/indian-car-scene/211449-state-wise-car-sales-data-april-2018-march-2019-fy19.html

  3. B. Brunekreef, S.T. Holgate, Air pollution and health. Lancet 360(9341), 1233–1242 (2002). https://doi.org/10.1016/S0140-6736(02)11274-8

    Article  Google Scholar 

  4. A. Mishra, R. Prasad, Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal. Rev. - Sci. Eng. 56(1), 57–81 (2014). https://doi.org/10.1080/01614940.2014.866438

    Article  Google Scholar 

  5. G.C. Dhal, S. Dey, D. Mohan, R. Prasad, Simultaneous abatement of diesel soot and NOx emissions by effective catalysts at low temperature: an overview. Catal. Rev. - Sci. Eng. 60(3), 437–496 (2018). https://doi.org/10.1080/01614940.2018.1457831

    Article  Google Scholar 

  6. D.-W. Lee, S.-J. Song, K.-Y. Lee, Reduction of lean NO2 with diesel soot over metal-exchanged ZSM5, perovskite and γ-alumina catalysts. Korean J. Chem. Eng. 27(2), 452–458 (2010). https://doi.org/10.1007/s11814-010-0075-0

    Article  Google Scholar 

  7. W. Shangguan, G. Zou, Z. Jiang, Simultaneous Catalytic Removal of Diesel Soot and NOx. Energy and Environment Research in China. Shanghai Jiao TongUniversity Press, Shanghai and Springer Nature Singapore Pte Ltd. (2019). https://doi.org/10.1007/978-981-10-7266-6. Hardcover ISBN: 978-981-10-7265-9. Softcover ISBN: 978-981-13-3930-1. eBook ISBN: 978-981-10-7266-6. Series ISSN: 2197-0238. Series E-ISSN: 2197-0246. Springer, 2019

  8. A. Rangaswamy, P. Sudarsanam, B.M. Reddy, Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures. J. Rare Earths 33(11), 1162–1169 (2015). https://doi.org/10.1016/S1002-0721(14)60541-X

    Article  Google Scholar 

  9. J. Warner, F. Carminati, Z. Wei, W. Lahoz, J.-L. Attié, Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions. Atmos. Chem. Phys. 13(24), 12469–12479 (2013). https://doi.org/10.5194/acp-13-12469-2013

    Article  ADS  Google Scholar 

  10. S. Fuzzi et al., Particulate matter, air quality and climate: lessons learned and future needs. Atmos. Chem. Phys. 15(14), 8217–8299 (2015). https://doi.org/10.5194/acp-15-8217-2015

    Article  ADS  Google Scholar 

  11. L. Yang, C. Zhang, X. Shu, T. Yue, S. Wang, Z. Deng, The mechanism of Pd, K co-doping on Mg–Al hydrotalcite for simultaneous removal of diesel soot and NOx in SO2-containing atmosphere. Fuel 240(2018), 244–251 (2019). https://doi.org/10.1016/j.fuel.2018.11.128

  12. R.J. Farrauto, K.E. Voss, Monolithic diesel oxidation catalysts. Appl. Catal. B Environ. 10(1–3), 29–51 (1996). https://doi.org/10.1016/0926-3373(96)00022-7

    Article  Google Scholar 

  13. M.J. Kleeman, J.J. Schauer, G.R. Cass, Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 34(7), 1132–1142 (2000). https://doi.org/10.1021/es981276y

    Article  ADS  Google Scholar 

  14. U.K. Mishra, V.S. Chandel, O.P. Singh, A review on cerium oxide–based catalysts for the removal of contaminants. Emergent Mater. (2021). https://doi.org/10.1007/s42247-021-00295-2

  15. B. Jiang et al., Green fabrication of hierarchically-structured Pt/bio-CeO2 nanocatalysts using natural pollen templates for low-temperature CO oxidation. Mol. Catal. 524, 112251 (2022). https://doi.org/10.1016/j.mcat.2022.112251

    Article  Google Scholar 

  16. H.M. Altass et al., Low temperature CO oxidation over highly active gold nanoparticles supported on reduced graphene oxide@Mg-BTC nanocomposite. Catal. Letters (2022). https://doi.org/10.1007/s10562-022-04026-y

    Article  Google Scholar 

  17. M. Issa, C. Petit, A. Brillard, J.F. Brilhac, Oxidation of carbon by CeO2: effect of the contact between carbon and catalyst particles. Fuel 87(6), 740–750 (2008). https://doi.org/10.1016/j.fuel.2007.05.053

    Article  Google Scholar 

  18. P.A. Kumar, M.D. Tanwar, S. Bensaid, N. Russo, D. Fino, Soot combustion improvement in diesel particulate filters catalyzed with ceria nanofibers. Chem. Eng. J. 207–208, 258–266 (2012). https://doi.org/10.1016/j.cej.2012.06.096

    Article  Google Scholar 

  19. Z. Zhao, J. Ma, M. Li, W. Liu, X. Wu, S. Liu, Model Ag/CeO2 catalysts for soot combustion: roles of silver species and catalyst stability. Chem. Eng. J. 430, 132802 (2022). https://doi.org/10.1016/j.cej.2021.132802

    Article  Google Scholar 

  20. F. Wang et al., Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 15(1), 452–456 (2022). https://doi.org/10.1007/s12274-021-3501-1

    Article  ADS  Google Scholar 

  21. U.K. Mishra, V.S. Chandel, O.P. Singh, N. Alam, Synthesis of CeO2 and Zr-doped CeO2 (Ce1−xZrxO2) catalyst by green synthesis for soot oxidation activity. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06997-x

    Article  Google Scholar 

  22. J. Suzuki, S. Matsumoto, Development of catalysts for diesel particulate NOx reduction. Top. Catal. 28(1–4), 171–176 (2004). https://doi.org/10.1023/B:TOCA.0000024347.67237.f6

    Article  Google Scholar 

  23. N. Serhan, A. Tsolakis, A. Wahbi, F.J. Martos, S. Golunski, Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Appl. Catal. B Environ. 241, 471–482 (2019). https://doi.org/10.1016/j.apcatb.2018.09.068

    Article  Google Scholar 

  24. J. Kitagawa, T. Hijikata, K. Ishikawa, Ceramic honeycomb filter for purifying exhaust gases. United States Pat. (19) U. S. Pat. US20090239(19) (1989)

  25. A.M. Hernández-Giménez, D.L. Castelló, A. Bueno-López, Diesel soot combustion catalysts: review of active phases. Chem. Pap. 68(9), 1154–1168 (2014). https://doi.org/10.2478/s11696-013-0469-7

    Article  Google Scholar 

  26. A. Bueno-López, K. Krishna, M. Makkee, J.A. Moulijn, Active oxygen from CeO2 and its role in catalysed soot oxidation. Catal. Lett. 99(3–4), 203–205 (2005). https://doi.org/10.1007/s10562-005-2120-x

    Article  Google Scholar 

  27. Y. Teraoka, W.F. Shangguan, S. Kagawa, Reaction mechanism of simultaneous catalytic removal of NOx and diesel soot particulates. Res. Chem. Intermed. 26(2), 201–206 (2000). https://doi.org/10.1163/156856700X00246

    Article  Google Scholar 

  28. M. Iwamoto, H. Hamada, Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catal. Today 10(1), 57–71 (1991). https://doi.org/10.1016/0920-5861(91)80074-J

    Article  Google Scholar 

  29. W. Held, A. König, T. Richter, L. Puppe, Catalytic NOx reduction in net oxidizing exhaust gas. SAE Tech. Pap. (1990). https://doi.org/10.4271/900496

    Article  Google Scholar 

  30. E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Soot combustion over silver-supported catalysts. Appl. Catal. B Environ. 91(1–2), 489–498 (2009). https://doi.org/10.1016/j.apcatb.2009.06.019

    Article  Google Scholar 

  31. P.W. Park, C.L. Boyer, Effect of SO2 on the activity of Ag/γ-Al2O3 catalysts for NOx reduction in lean conditions. Appl. Catal. B Environ. 59(1–2), 27–34 (2005). https://doi.org/10.1016/j.apcatb.2004.11.027

    Article  Google Scholar 

  32. R. Brosius, K. Arve, M.H. Groothaert, J.A. Martens, Adsorption chemistry of NOx on Ag/Al2O3 catalyst for selective catalytic reduction of NOx using hydrocarbons. J. Catal. 231(2), 344–353 (2005). https://doi.org/10.1016/j.jcat.2005.01.034

    Article  Google Scholar 

  33. L. Gang et al., Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature. J. Catal. 206(1), 60–70 (2002). https://doi.org/10.1006/jcat.2001.3470

    Article  Google Scholar 

  34. S. Imamura, H. Yamada, K. Utani, Combustion activity of Ag/CeO2 composite catalyst. Appl. Catal. A Gen. 192(2), 221–226 (2000). https://doi.org/10.1016/S0926-860X(99)00344-0

    Article  Google Scholar 

  35. Z. Qu, W. Huang, M. Cheng, X. Bao, Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. J. Phys. Chem. B 109(33), 15842–15848 (2005). https://doi.org/10.1021/jp050152m

    Article  Google Scholar 

  36. D. Gardini, J.M. Christensen, C.D. Damsgaard, A.D. Jensen, J.B. Wagner, Visualizing the mobility of silver during catalytic soot oxidation. Appl. Catal. B Environ. 183, 28–36 (2016). https://doi.org/10.1016/j.apcatb.2015.10.029

    Article  Google Scholar 

  37. N. Imanaka, T. Masui, K. Minami, K. Koyabu, Promotion of low-temperature reduction behavior of the CeO2-ZrO2-Bi2O3 solid solution by addition of silver. Chem. Mater. 17(26), 6511–6513 (2005). https://doi.org/10.1021/cm0519380

    Article  Google Scholar 

  38. G. Preda, G. Pacchioni, Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study. Catal. Today 177(1), 31–38 (2011). https://doi.org/10.1016/j.cattod.2011.04.036

    Article  Google Scholar 

  39. R. Rao et al., A melamine-assisted pyrolytic synthesis of Ag-CeO2 nanoassemblys for CO oxidation: activation of Ag-CeO2 interfacial lattice oxygen. Appl. Surf. Sci. 571, 151283 (2022). https://doi.org/10.1016/j.apsusc.2021.151283

    Article  Google Scholar 

  40. R. Rao et al., Enhancing catalytic performance of Ag-CeO2 catalysts for catalytic CO combustion: Ag-CeO2 interface interaction and Na-promoting action. Fuel 317, 123439 (2022). https://doi.org/10.1016/j.fuel.2022.123439

    Article  Google Scholar 

  41. J.H. Lee, M.J. Kim, E.J. Lee, D.-W. Lee, C.H. Kim, K.-Y. Lee, Promoting effect of Rh-impregnation on Ag/CeO2 catalyst for soot oxidation. Appl. Surf. Sci. 572, 151504 (2022). https://doi.org/10.1016/j.apsusc.2021.151504

    Article  Google Scholar 

  42. J. Lee et al., Effects of La incorporation in catalytic activity of Ag/La-CeO2 catalysts for soot oxidation. J. Hazard. Mater. 414, 125523 (2021). https://doi.org/10.1016/j.jhazmat.2021.125523

    Article  Google Scholar 

  43. W. Wang, Y. Liu, L. Wang, W. Zhan, Y. Guo, Y. Guo, Soot combustion over Ag catalysts supported on shape-controlled CeO2. Catal. Today (2020). https://doi.org/10.1016/j.cattod.2020.10.043

    Article  Google Scholar 

  44. M.V. Grabchenko, G.V. Mamontov, V.I. Zaikovskii, V. La Parola, L.F. Liotta, O.V. Vodyankina, The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B Environ. 260(September), 118148 (2020). https://doi.org/10.1016/j.apcatb.2019.118148

  45. S. Liu et al., Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J. Catal. 337, 188–198 (2016). https://doi.org/10.1016/j.jcat.2016.01.019

    Article  ADS  Google Scholar 

  46. J.H. Lee, S.H. Lee, J.W. Choung, C.H. Kim, K.Y. Lee, Ag-incorporated macroporous CeO2 catalysts for soot oxidation: effects of Ag amount on the generation of active oxygen species. Appl. Catal. B Environ. 246, 356–366 (2019). https://doi.org/10.1016/j.apcatb.2019.01.064

    Article  Google Scholar 

  47. M. Zhang et al., Ozone activated Ag/CeO2 catalysts for soot combustion: the surface and structural influences. Chem. Eng. J. 375(April), (2019). https://doi.org/10.1016/j.cej.2019.121961

  48. T.V. Ivanova, T. Homola, A. Bryukvin, D.C. Cameron, Catalytic performance of Ag2O and Ag doped CeO2 prepared by atomic layer deposition for diesel soot oxidation. Coatings 8(7) (2018). https://doi.org/10.3390/coatings8070237

  49. G. Zou et al., Catalytic performance of Ag/Co-Ce composite oxides during soot combustion in O2 and NOx: insights into the effects of silver. Chinese J. Catal. 38(3), 564–572 (2017). https://doi.org/10.1016/S1872-2067(17)62758-X

    Article  Google Scholar 

  50. Y. Gao et al., Study of Ag/CexNd1-xO2 nanocubes as soot oxidation catalysts for gasoline particulate filters: balancing catalyst activity and stability by Nd doping. Appl. Catal. B Environ. 203, 116–126 (2017). https://doi.org/10.1016/j.apcatb.2016.10.006

    Article  Google Scholar 

  51. X. Deng et al., Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation. Chem. Eng. J. 313, 544–555 (2017). https://doi.org/10.1016/j.cej.2016.12.088

    Article  Google Scholar 

  52. L. Castoldi, E. Aneggi, R. Matarrese, R. Bonzi, A. Trovarelli, L. Lietti, Simultaneous removal of soot and NOx over silver and ruthenium-based catalysts. Top. Catal. 60(3–5), 209–213 (2017). https://doi.org/10.1007/s11244-016-0599-6

    Article  Google Scholar 

  53. Z. Qu, F. Yu, X. Zhang, Y. Wang, J. Gao, Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem. Eng. J. 229, 522–532 (2013). https://doi.org/10.1016/j.cej.2013.06.061

    Article  Google Scholar 

  54. K.I. Shimizu, H. Kawachi, S.I. Komai, K. Yoshida, Y. Sasaki, A. Satsuma, Carbon oxidation with Ag/ceria prepared by self-dispersion of Ag powder into nano-particles. Catal. Today 175(1), 93–99 (2011). https://doi.org/10.1016/j.cattod.2011.03.053

    Article  Google Scholar 

  55. K. Yamazaki, T. Kayama, F. Dong, H. Shinjoh, A mechanistic study on soot oxidation over CeO2-Ag catalyst with ‘rice-ball’ morphology. J. Catal. 282(2), 289–298 (2011). https://doi.org/10.1016/j.jcat.2011.07.001

    Article  Google Scholar 

  56. K. Ichi Shimizu, H. Kawachi, A. Satsuma, Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B Environ. 96(1–2), 169–175 (2010). https://doi.org/10.1016/j.apcatb.2010.02.016

  57. H. Liang et al., Highly reactive and thermally stable Ag/YSZ catalysts with macroporous fiber-like morphology for soot combustion. Appl. Catal. B Environ. 294, 120271 (2021). https://doi.org/10.1016/j.apcatb.2021.120271

    Article  Google Scholar 

  58. L. Nossova, G. Caravaggio, M. Couillard, S. Ntais, Effect of preparation method on the performance of silver-zirconia catalysts for soot oxidation in diesel engine exhaust. Appl. Catal. B Environ. 225, 538–549 (2018). https://doi.org/10.1016/j.apcatb.2017.11.070

    Article  Google Scholar 

  59. S. Raj, M. Hattori, M. Ozawa, Ag-doped ZrO2 nanoparticles prepared by hydrothermal method for efficient diesel soot oxidation. Mater. Lett. 234(September), 205–207 (2019). https://doi.org/10.1016/j.matlet.2018.09.057

    Article  Google Scholar 

  60. C. Lee, Y.G. Shul, H. Einaga, Silver and manganese oxide catalysts supported on mesoporous ZrO2 nanofiber mats for catalytic removal of benzene and diesel soot. Catal. Today 281, 460–466 (2017). https://doi.org/10.1016/j.cattod.2016.05.050

    Article  Google Scholar 

  61. G. Corro, U. Pal, E. Ayala, E. Vidal, Diesel soot oxidation over silver-loaded SiO2 catalysts. Catal. Today 212, 63–69 (2013). https://doi.org/10.1016/j.cattod.2012.10.005

    Article  Google Scholar 

  62. G. Corro, U. Pal, E. Ayala, E. Vidal, E. Guilleminot, Effect of Ag, Cu, and Au incorporation on the diesel soot oxidation behavior of SiO2: role of metallic Ag. Top. Catal. 56(1–8), 467–472 (2013). https://doi.org/10.1007/s11244-013-9998-0

    Article  Google Scholar 

  63. B. Sawatmongkhon et al., Catalytic oxidation of diesel particulate matter by using silver and ceria supported on alumina as the oxidation catalyst. Appl. Catal. A Gen. 574(November), 33–40 (2019). https://doi.org/10.1016/j.apcata.2019.01.020

  64. L. Castoldi et al., Silver-based catalytic materials for the simultaneous removal of soot and NOx. Catal. Today 258(x), 405–415 (2015). https://doi.org/10.1016/j.cattod.2015.02.024

  65. Y. Gao, X. Wu, S. Liu, M. Ogura, M. Liu, D. Weng, Aggregation and redispersion of silver species on alumina and sulphated alumina supports for soot oxidation. Catal. Sci. Technol. 7(16), 3524–3530 (2017). https://doi.org/10.1039/c7cy00831g

    Article  Google Scholar 

  66. K. Theinnoi, A. Tsolakis, S. Sitshebo, R.F. Cracknell, R.H. Clark, Fuels combustion effects on a passive mode silver/alumina HC-SCR catalyst activity in reducing NOx. Chem. Eng. J. 158(3), 468–473 (2010). https://doi.org/10.1016/j.cej.2010.01.021

    Article  Google Scholar 

  67. J. Rodríguez-Fernández, A. Tsolakis, M. Ahmadinejad, S. Sitshebo, Investigation of the deactivation of a NOx-reducing hydrocarbon-selective catalytic reduction (HC-SCR) catalyst by thermogravimetric analysis: effect of the fuel and prototype catalyst. Energy Fuels 24(2), 992–1000 (2010). https://doi.org/10.1021/ef900996f

    Article  Google Scholar 

  68. K. Villani, R. Brosius, J.A. Martens, Catalytic carbon oxidation over Ag/Al2O3. J. Catal. 236(1), 172–175 (2005). https://doi.org/10.1016/j.jcat.2005.09.018

    Article  Google Scholar 

  69. C. Lee et al., Ag-loaded cerium-zirconium solid solution oxide nano-fibrous webs and their catalytic activity for soot and CO oxidation. Fuel 212, 395–404 (2018). https://doi.org/10.1016/j.fuel.2017.10.007

    Article  Google Scholar 

  70. D.S. Afanasev, O.A. Yakovina, N.I. Kuznetsova, A.S. Lisitsyn, High activity in CO oxidation of Ag nanoparticles supported on fumed silica. Catal. Commun. 22, 43–47 (2012). https://doi.org/10.1016/j.catcom.2012.02.014

    Article  Google Scholar 

  71. G. Corro et al., Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: an XPS study. Appl. Catal. B Environ. 216, 1–10 (2017). https://doi.org/10.1016/j.apcatb.2017.05.059

    Article  Google Scholar 

  72. K. Ikeue, S. Kobayashi, M. Machida, Catalytic soot oxidation by Ag/BaCeO3 having tolerance to SO2 poisoning. J. Ceram. Soc. Japan 117(1371), 1153–1157 (2009). https://doi.org/10.2109/jcersj2.117.1153

    Article  Google Scholar 

  73. T. Kayama, K. Yamazaki, H. Shinjoh, Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. J. Am. Chem. Soc. 132(38), 13154–13155 (2010). https://doi.org/10.1021/ja105403x

    Article  Google Scholar 

  74. C. Lee, J. Il Park, Y.G. Shul, H. Einaga, Y. Teraoka, Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation. Appl. Catal. B Environ. 174175, 185–192 (2015). https://doi.org/10.1016/j.apcatb.2015.03.008

  75. S. Li et al., Oxidative reactivity enhancement for soot combustion catalysts by co-doping silver and manganese in ceria. Appl. Catal. A Gen. 570, 299–307 (2019). https://doi.org/10.1016/j.apcata.2018.11.033

    Article  Google Scholar 

  76. T. Masui, K. Minami, K. Koyabu, N. Imanaka, Synthesis and characterization of new promoters based on CeO2-ZrO2-Bi2O3 for automotive exhaust catalysts. Catal. Today 117(1–3), 187–192 (2006). https://doi.org/10.1016/j.cattod.2006.05.015

    Article  Google Scholar 

  77. N. Güngör, S. Işçi, E. Günister, W. Miśta, H. Teterycz, R. Klimkiewicz, Characterization of sepiolite as a support of silver catalyst in soot combustion. Appl. Clay Sci. 32(3–4), 291–296 (2006). https://doi.org/10.1016/j.clay.2006.03.005

    Article  Google Scholar 

  78. A. Serve, A. Boreave, B. Cartoixa, K. Pajot, P. Vernoux, Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation. Appl. Catal. B Environ. 242, 140–149 (2019). https://doi.org/10.1016/j.apcatb.2018.09.069

    Article  Google Scholar 

  79. H. Wang et al., Activation and deactivation of Ag/CeO2 during soot oxidation: Influences of interfacial ceria reduction. Catal. Sci. Technol. 7(10), 2129–2139 (2017). https://doi.org/10.1039/c7cy00450h

    Article  Google Scholar 

  80. K. Yamazaki, Y. Sakakibara, F. Dong, H. Shinjoh, The remote oxidation of soot separated by ash deposits via silver-ceria composite catalysts. Appl. Catal. A Gen. 476, 113–120 (2014). https://doi.org/10.1016/j.apcata.2014.02.014

    Article  Google Scholar 

  81. M. Kikugawa, K. Yamazaki, A. Kato, T. Uyama, N. Takahashi, H. Shinjoh, Silver sulfate catalyst for soot oxidation with high resistance to sulfur poisoning. Appl. Catal. A Gen. 576, 32–38 (2019). https://doi.org/10.1016/j.apcata.2019.02.033

    Article  Google Scholar 

  82. L.F. Nascimento, J.F. Lima, P.C. de Sousa Filho, O.A. Serra, Control of diesel particulate emission based on Ag/CeOx/FeOy catalysts supported on cordierite. Chem. Eng. J. 290, 454–464 (2016). https://doi.org/10.1016/j.cej.2016.01.043

  83. H. Wang et al., Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: the role of Fe2O3 crystal plane and tandem oxygen delivery. Appl. Catal. B Environ. 237(March), 251–262 (2018). https://doi.org/10.1016/j.apcatb.2018.05.093

    Article  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to the “Technical Education Quality Improvement Programme of Govt. of India” (TEQIP-III) of Rajkiya Engineering College Ambedkar Nagar Affiliated to Dr. A.P.J. Abdul Kalam Technical University Lucknow, Uttar Pradesh, India, for financial support and the authors are also thankful to the researchers whose findings (figures/supplementary material) have been cited here.

Funding

This study was supported by the Technical Education Quality Improvement Programme of Govt. of India (TEQIP-III) of Rajkiya Engineering College Ambedkar Nagar Affiliated to Dr. A.P.J. Abdul Kalam Technical University Lucknow, Uttar Pradesh, India.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the manuscript and permit it for submission.

Corresponding author

Correspondence to Upendra Kumar Mishra.

Ethics declarations

Conflict of Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, U.K., Chandel, V.S., Mourya, V.K. et al. Removal of Soot, CO, NOx, and PM by Ag-Based Nanomaterials: A Review. Braz J Phys 52, 172 (2022). https://doi.org/10.1007/s13538-022-01176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01176-7

Keywords

Navigation