Skip to main content

Advertisement

Log in

Molecular Structure and Spectroscopic Exploration of Antiviral Drug Docosanol: a Combined Experimental and DFT Study

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The electronic and vibrational spectral features of antiviral medication docosanol were explored by density functional theory simulations. Experimental FT-IR, FT-Raman and UV spectra were recorded and compared with the theoretically computed values. NBO analysis is utilized to figure out the stability which reveals that charge density delocalization along with hyperconjugative actions is liable for the molecule’s stability. HOMO–LUMO energy values were adopted to infer the compound’s global reactivity characteristics. To access the local reactivity parameters, the Fukui functions are calculated. The electronic structure from time-dependent density functional theory computations discloses the intramolecular charge transfer and σ → σ * electronic transitions. The most reactive sites for the nucleophilic as well as electrophilic attack were probed adopting electrostatic potential analysis. The stabilizing hydrogen bonding and hydrophobic interactions with antimicrobial and anticancer proteins were elucidated by molecular docking and the results were re-evaluated through in vitro antimicrobial and MTT assay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available from the corresponding author on reasonable request.

References

  1. R. Nussinov, M. Zhang, R. Maloney, C. Tsai, B.R. Yavuz, N. Tuncbag, H. Jang, Med. Res. Rev. 42, 770–799 (2021)

    Article  Google Scholar 

  2. H. Tandon, T. Chakraborty, V. Suhag, Chem. Biomol. Engg. 4, 45 (2019)

    Google Scholar 

  3. J.F. Marcelletti, Antivir. Res. 56, 153–166 (2002)

    Article  Google Scholar 

  4. L.E. Pope, J.F. Marcelletti, L.R. Katz, J.Y. Lin, D.H. Katz, M.L. Parish, P.G. Spear, Antivir. Res. 40, 85–94 (1998)

    Article  Google Scholar 

  5. Michael J. Scolaro, Lucy B. Gunnill, Laura E. Pope, M.H. Khalil, David H. Katz, James E. Berg, AIDS Res. Hum. Retrovir. 17, 35–43 (2001)

  6. C.J. Miller, M.J. Gersten, R.C. Davis, D.H. Katz, Antivir. Res. 26, A277 (1995)

    Article  Google Scholar 

  7. D.H. Katz, J.R. Marcelletti, L.E. Pope, M.H. Khalil, L.R. Katz, R. McFadden, N.Y. Ann, Acad. Sci. 724,472– 488 (1994)

  8. L. Larsson, J. Jiménez, P. Valero-Guillén, F. Martín-Luengo, M. Kubín, J. Clin. Microbiol. 27, 2388–2390 (1989)

    Article  Google Scholar 

  9. S.L. Sacks, R.A. Thisted, T.M. Jones, R.A. Barbarash, D.J. Mikolich, G.E. Ruoff, J.L. Jorizzo, L.B. Gunnilla, D.H. Katz, M.H. Khalil, P.R. Morrow, G.J. Yakatan, L.E. Pope, E. Berga, J. Am. Acad. Dermatol. 45, 222–230 (2001)

    Article  Google Scholar 

  10. K.S. Matlin, H. Reggio, A. Helenius, K. Simons, Prog. Clin. Biol. Res. 91, 599–611 (1982)

    Google Scholar 

  11. National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests—Fifth Edition: Approved Standard M2-A5. NCCLS,Villanova, PA (1993a)

  12. S.V.D. Nisha, I.H. Joe, J. Mol. Struct. 1233, 130033 (2021)

    Article  Google Scholar 

  13. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  14. C. Lee, W. Yang, R. G. Parr, Phys.Rev. B. 37, 785–789 (1988)

  15. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200–1211 (1980)

    Article  ADS  Google Scholar 

  16. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson,H. Nakatsuji, M. Caricato, X. Li, H.P.Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E.Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E.Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,R.E. Stratmann, O.Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski,R.L. Martin, K. Morokuma, V.G.Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT (2009)

  18. K.E. Riley, E.N. Brothers, K.B. Ayers, K.M.J. Merz, Chem Theory Comput. I, 546 (2005)

    Article  Google Scholar 

  19. N.X. Wang, A.K.J. Wilson, Chem Phys. 121,7632 (2004)

  20. J. B. Foresman, E. Frish, Exploring chemistry with electronic structure methods, 2,149 (1996)

  21. E.D. Glendening, A.E. Reed, J.E Carpenter, F. Weinhold, NBO Version 3.1, Theorectical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison (1998)

  22. <http://cccbdb.nist.gov/vibscalejust.asp>, III.B.3.a. (XIII.C.1.). (accessed on 14 April 2015).

  23. M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc. 114, 220–230 (2013)

    Article  ADS  Google Scholar 

  24. K. Burke, J. Werschnik, E.K.U Gross, J. Chem. Phy. 123, 062206 (2005)

  25. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 16, 2785–2791 (2009)

    Article  Google Scholar 

  26. R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, J. Comput. Chem. 28, 1145–1152 (2007)

    Article  Google Scholar 

  27. Dassault Systemes, BIOVIA, Discovery Studio, Version 4.0, Dassault Systemes, San Diego (2016)

  28. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rew. 88, 899 (1988)

    Article  Google Scholar 

  29. G. Socrates, Infrared and Raman characteristic group frequencies. England: John Wiley & Sons Ltd. (1980)

  30. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to infrared to and Raman spectroscopy.New York: Academic press (1990)

  31. B. Smith, Infrared spectral interpretation, a systematic approach (CRC, Washington, DC, 1999)

    Google Scholar 

  32. B. Edwin, I. Hubert Joe, Spectrochim. Acta A Mol.Biomol. Spectrosc. 97, 838–846 (2012)

  33. L.J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman & Hall, London, UK, 1975)

    Book  Google Scholar 

  34. I. Fleming, Frontier Orbitals and Organic Chemical Reactions (John Wiley & Sons, NewYork, 1978)

    Google Scholar 

  35. R. Parthasarathi, V. Subramanian, D.R. Roy, P.K. Chattaraj, Bioorg.Med.chem. 12, 5533–5543 (2004)

  36. R.G. Parr, W. Yang, Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  37. Y. Li, N.S. Evans, J. Am. Chem. Soc. 117, 4885 (1995)

    Google Scholar 

  38. K. Fukui, Theory of Orientation and Stereoselection (Springer-Verlag, Berlin, 1975)

    Book  Google Scholar 

  39. E.F. Mooney, Spectrochim. Acta. 19, 877–887 (1963)

    Article  ADS  Google Scholar 

  40. A. Atac, M. Karabacak, E. Kose, C. Karaca, Spectrochim. Acta A. 83, 250–258 (2011)

    Article  ADS  Google Scholar 

  41. H. Khanum, A. Mashrai, N. Siddiqui, M. Ahmad, Mohammad Jane Alam, Shabbir Ahmad, Shamsuzzaman. J. Mol. Struct. 1084, 274–283 (2015)

    Article  ADS  Google Scholar 

  42. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  43. T. Bohnert, C. Prakash, Encyclo. Drug Meta. Interac. (2012)

  44. R. Perozzo, M. Kuo, A.B. Singh Sidhu, J.T. Valiyaveetil, R. Bittman, W.R. Jacobs, D.A. Fidock, J.C. Sacchettini, Jour. Biol.Chem. 277, 13106-13114 ( 2002)

  45. D. Patra, P. Mishra, A. Surolia, M. Vijayan, Glycobiology 24, 956–965 (2014)

    Article  Google Scholar 

  46. C. Lauritano, K.A. Martínez, P. Battaglia, A. Granata, M. de la Cruz, B. Cautain, J. Martín, F. Reyes, A. Ianora, L. Guglielmo, Sci. Rep. 10 (2020)

  47. C.R. Carvalho, V.N. Gonçalves, C.B. Pereira, S. Johann, I.V. Galliza, T.M.A. Alves, A. Rabello, M.E.G. Sobral, C.L. Zani, C.A. Rosa, L.H. Rosa, Symbiosis 57, 95–107 (2012)

    Article  Google Scholar 

  48. D. Fass, R. A. Davey, C. A. Hamson, P. S. Kim, J. M. Cunningham, J. M. Berger, FRIEND MURINE LEUKEMIA VIRUS RECEPTOR-BINDING DOMAIN (1997)

  49. M. McTigue, Y. Deng, W. Liu, A. Brooun, Structure of L1196M Mutant Anaplastic Lymphoma Kinase (2011)

  50. M.C. Franklin, S. Kadkhodayan, H. Ackerly, D. Alexandru, M.D. Distefano, L.O. Elliott, J.A. Flygare, D. Vucic, K. Deshayes, W.J. Fairbrother, Structure and Function Analysis of Peptide Antagonists of Melanoma Inhibitor of Apoptosis (ML-IAP) (2003)

  51. G. Bujacz, M. Jaskolski, J. Alexandratos, A. Wlodawer, Avian sarcoma virus integrase catalytic core domain (1995)

  52. P. Anand, A.B. Kunnumakara, C. Sundaram, K.B. Harikumar, S.T. Tharakan, O.S. Lai, B. Sung, B.B. Aggarwal, Pharm. Res. 25, 2097–2116 (2008)

    Article  Google Scholar 

  53. I. Kubo, H. Muroi, H. Masaki, A. Kubo, Bioorganic Med. Chem. Lett. 3, 1305–1308 (1993)

    Article  Google Scholar 

  54. N. Kato, I. Shibasaki, J. Antibact. Antifung. Agents. 8, 325–331 (1980)

    Google Scholar 

  55. M.V. Berridge, P.M. Herst, A.S. Tan, Biotech. Ann. Rev. 127–152 (2005)

  56. S.M. Thom, R.W. Horobin, E. Seidler, M.R. Barer, J. Appl. Bacteriol. 74(4), 433–443 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nisha S. V. D.: conceptualization; methodology; investigation; writing—original draft. I. Hubert Joe: conceptualization; supervision; resources; writing—review and editing.

Corresponding author

Correspondence to I. Hubert Joe.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisha, S.V.D., Joe, I.H. Molecular Structure and Spectroscopic Exploration of Antiviral Drug Docosanol: a Combined Experimental and DFT Study. Braz J Phys 52, 166 (2022). https://doi.org/10.1007/s13538-022-01168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01168-7

Keywords

Navigation