Skip to main content
Log in

Propagation and Collision Phenomena of Ion Acoustic ZK Solitons in Quantum Plasmas: Effects of External Force and Exchange–Correlation Potential of Degenerate Electrons

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Propagation of ion acoustic waves (IAWs) and collision of double-, triple-, and quadruple IAWs have been studied in a magnetized plasma system consisting of cold ions and degenerate electrons. It is considered that the ions are inertial and non-degenerate while the electrons are degenerate and non-inertial. The reductive perturbation method is used to derive the Zakharov-Kuznetsov (ZK) equation. The multi-soliton solutions of the ZK equation are derived using the Hirota bilinear method. The consequences of external periodic force and exchange–correlation potential on the propagation and overtaking collision of ion acoustic (IA) ZK solitons are investigated taking into account the plasma parameters as observed in astrophysical objects. The considered quantum fluid model is valid for astrophysical conditions in non-relativistic degenerate plasmas where the plasma density and magnetic field strength are \({10}^{26}\le {{\varvec{n}}}_{0}\le {10}^{29}{\mathbf{c}\mathbf{m}}^{-3}\) and \({10}^{6}\le {{\varvec{B}}}_{0}\le {10}^{9}\) G, respectively. It is found that the amplitude and width of the IAZK solitons are modified due to the periodic force and exchange–correlation potential. It is also found that the large-amplitude solitons always overtake the smaller one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.A. Maier, Plasmonics (Springer, New York, 2007)

    Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman et al., Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  3. A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor equations (Springer, Vienna, 1990)

    Book  MATH  Google Scholar 

  4. M. Leontovich, Izv. Akad, Nauk Arm. SSR, Fiz. 8,16 (1994)

  5. A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006)

    Article  ADS  Google Scholar 

  6. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  7. S. L. Shapiro and S. L. Teukolsky, Black holes, white dwarfs and neutron stars: the physics of compact objects (John Wiley & Sons), New York (1983)

  8. Y.D. Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  9. S.H. Glenzer, O.L. Landen, P. Neumayer et al., Phys. Rev. Lett. 98, 065002 (2007)

    Article  ADS  Google Scholar 

  10. S.X. Hu, C.H. Keitel, Phys. Rev. Lett. 83, 4709 (1999)

    Article  ADS  Google Scholar 

  11. I. Zeba, M.E. Yahia, P.K. Shukla, W.M. Moslem, Phys. Lett. A 337, 2309 (2012)

    Article  ADS  Google Scholar 

  12. W.M. Moslem, I. Zeba, P.K. Shukla, Appl. Phys. Lett. 101, 032106 (2012)

    Article  ADS  Google Scholar 

  13. N. Crouseilles, P.-A. Hervieux, G. Manfredi, Phys. Rev. B 78, 155412 (2008)

    Article  ADS  Google Scholar 

  14. R. Maroof, A. Mushtaq, A. Qamar, Phys. Plasmas 23, 013704 (2016)

    Article  ADS  Google Scholar 

  15. L. Brey, J. Dempsay, N.F. Johnson, B.L. Halperin, Phys. Rev. B 42, 1240 (1990)

    Article  ADS  Google Scholar 

  16. D. Pines, J. Nucl. Energy Part C 2, 5 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Haas, Phys Plasmas 12, 062117 (2005)

    Article  ADS  Google Scholar 

  18. S. Choudhury, T.K. Das, M.K. Ghorui, P. Chatterjee, Phys Plasmas 23, 062110 (2016)

    Article  ADS  Google Scholar 

  19. W.F. El-Taibany, A.A. Mamun, Phys. Rev. E 85, 026406 (2012)

    Article  ADS  Google Scholar 

  20. S. Hussain, S. Mahmood, A. Pasqua, Phys. Lett. A 377, 2105 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Mushtaq, S.V. Vladimirov, Phys Plasmas 17, 102310 (2010)

    Article  ADS  Google Scholar 

  22. M.I. Trukhanova, P.A. Andreev, Phys. Plasmas 22, 022128 (2015)

    Article  ADS  Google Scholar 

  23. A. Mushtaq, S.V. Vladimirov, Eur. Phys. J. D 64, 419 (2011)

    Article  ADS  Google Scholar 

  24. S. Hussain, S. Mahmood, A.U. Rehman, Phys. Plasmas 21, 112901 (2014)

    Article  ADS  Google Scholar 

  25. K. Ourabah, M. Tribeche, Phys. Rev. E 88, 045101 (2013)

    Article  ADS  Google Scholar 

  26. S.-H. Mao, J.-K. Xue, Phys. Scripta 88, 055501 (2011)

    Article  ADS  Google Scholar 

  27. W. Wang, J. Shao, Z. Li, Chem. Phys. Lett. 522, 83 (2012)

    Article  ADS  Google Scholar 

  28. J. Yan, K.W. Jacobsen, K.S. Thygesen, Phys. Rev. B 86, 241404 (2012)

    Article  ADS  Google Scholar 

  29. P.K. Shukla, B. Eliasson, Phys-Uspekhi 53, 51 (2010)

    Article  ADS  Google Scholar 

  30. P. K. Shukla, B. Eliasson B, Rev. Modern Phys. 88, 885 (2011)

  31. A. Misra, S. Samanta, Phys. Plasmas 15, 123307 (2008)

    Google Scholar 

  32. A.P. Misra, S. Banerjee, F. Haas, P.K. Shukla, L.P.G. Assis, Phys. Plasmas 17, 032307 (2010)

    Article  ADS  Google Scholar 

  33. A.P. Misra, P.K. Shukla, Phys. Plasmas 18, 042308 (2011)

    Article  ADS  Google Scholar 

  34. M. M. Masud and A. A. Mamun, J E T P Lett. 96, 855 (2012)

  35. M.M. Masud, M. Asaduzzaman, A.A. Mamun, Phys. Plasmas 19, 103706 (2012)

    Article  ADS  Google Scholar 

  36. S.K. El-Labany, W.F. El-Taibany, A.E. El-Samahy, A.M. Hafez, A. Atteya, IEEE Trans. on Plasma Sci. 44, 842 (2016)

    Article  ADS  Google Scholar 

  37. U.M. Abdelsalam, M.M. Selim, J. Plasma Physics 79, 163 (2013)

    Article  ADS  Google Scholar 

  38. V.E. Zakharov, E.A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974)

    ADS  Google Scholar 

  39. G. Williams, I. Kourakis, Phys. Plasmas 20, 122311 (2013)

    Article  ADS  Google Scholar 

  40. N.S. Saini, B.S. Chahal, A.S. Bains, C. Bedi, Phys. Plasmas 21, 022114 (2014)

    Article  ADS  Google Scholar 

  41. A.S. Bains, M. Tribeche, N.S. Saini, T.S. Gill, Phys. Plasmas 18, 104503 (2011)

    Article  ADS  Google Scholar 

  42. G. Williams, I. Kourakis, Plasma Phys. Control. Fusion 55, 055005 (2013)

    Article  ADS  Google Scholar 

  43. E. Infeld and G. Rowlands, Nonlinear waves, solitons and chaos (Cambridge University Press, Cambridge, (1990) p. 107).

  44. R. Ahmad, N. Gul, M. Adnan, F.Y. Khattak, Phys. Plasmas 23, 112112 (2016)

    Article  ADS  Google Scholar 

  45. F. Haas, S. Mahmood, Phys. Rev. E 94, 033212 (2016)

    Article  ADS  Google Scholar 

  46. V.B. Matveev, M.A. Salle, Darboux transformation and solitons (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  47. M. Wadati, H. Sanuki, K. Konno, Progress Theor. Phys. 53, 419 (1975)

    Article  ADS  Google Scholar 

  48. M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, New York, 1991)

    Book  MATH  Google Scholar 

  49. F. Caruello, M. Tabor, Physica D 39, 77 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  50. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  51. R. Jahangir, W. Masood, M. Siddiq et al., Phys. Plasmas 22, 092312 (2015)

    Article  ADS  Google Scholar 

  52. N. Batool, W. Masood, M. Siddiq et al., Phys. Plasmas 23, 082306 (2016)

    Article  ADS  Google Scholar 

  53. U. Hassan, W. Masood, R. Jahangir et al., Phys. Plasmas 25, 072302 (2018)

    Article  ADS  Google Scholar 

  54. H.L. Zhen, B. Tian, Y.F. Wang et al., Phys Plasmas 21, 012304 (2014)

    Article  ADS  Google Scholar 

  55. M.S. Osman, Waves Random Complex Media 26, 434 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Y. Khattak, W. Masood, R. Jahangir and M. Siddiq, Waves in random and complex media (2021). https://doi.org/10.1080/17455030.2021.1968536

  57. S. Hussain and S. Mahmood, Chaos Solitons Fractals 106, 266 (2018)

  58. S. Mahmood, H. Ur-Rahman, S. Hussain, M. Adnan, Phys. Lett. A 383, 125840 (2019)

    Article  MathSciNet  Google Scholar 

  59. D. Bohm, D. Pines, Phys. Rev., 1953, 92, 609; F. Haas, S. Mahmood, Phys. Rev. En 97, 063206 (2018)

  60. Zh.A. Molabekov, M. Bonitz, T.S. Ramazanov, Phys. Plasmas 25, 031903 (2018)

    Article  ADS  Google Scholar 

  61. L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)

    Article  ADS  Google Scholar 

  62. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  63. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  64. I. Kourakis, W.M. Moslem, U.M. Abdelsalam, R. Sabry, P.K. Shukla, Plasma Fusion Res. 4, 18 (2009)

    Article  ADS  Google Scholar 

  65. K. Nozaki, N. Bekki, Phys Rev Lett. 50, 1226 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  66. W. Beiglbock, J.P. Eckmann, H. Grosse, M. Loss, S. Smirnov et al., Concepts and results in chaotic dynamics (Springer, Berlin, 2000)

    Google Scholar 

  67. M. Shilov, C. Cates, R. James, Phys. Plasmas 11, 2573 (2004)

    Article  ADS  Google Scholar 

  68. S. Safeer, S. Mahmood, Q. Haque, Astrophys. J. 793, 36 (2014)

    Article  Google Scholar 

  69. L. Mandi, A. Saha and P. Chatterjee, Adv. Space Res. 64, 427(2019). https://doi.org/10.1016/j.asr.2019.04.028

  70. J. Tamang, J. D. D. Nkapkop , M. F. Ijaz , P. K. Prasad, N. Tsafack, A. Saha, J. Kengne and Y. Son, IEEE Access 9, 18782 (2021). https://doi.org/10.1109/ACCESS.2021.3054250

  71. P. Chatterjee, R. Ali, A. Saha, Z. Naturforsch 73, 151 (2018)

    Article  ADS  Google Scholar 

  72. D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  73. M. S. Alam and M. R. Talukder, Waves in random and complex media 31, 749 (2021). https://doi.org/10.1080/17455030.2019.1626027

  74. Q.-X. Qu, B. Tian, W.-J. Liu, K. Sun, P. Wang, Y. Jiang, B. Qin, Eur. Phys. J. D 61, 709 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Alam.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In absence of external periodic force, the standard solution of ZK equation (Eq. (37)) is

$${\varvec{\uppsi}}={{\varvec{\uppsi}}}_{{\varvec{m}}}{\mathbf{s}\mathbf{e}\mathbf{c}\mathbf{h}}^{2}\left(\frac{{\varvec{\chi}}}{{{\varvec{W}}}_{{\varvec{m}}}}\right),$$
(42)

where \({\varvec{\chi}}={\varvec{\xi}}{\varvec{l}}+{\varvec{\eta}}{\varvec{m}}-{\varvec{V}}{\varvec{\tau}}\), V is the constant velocity of IA wave, normalized by thermal ion acoustic speed, \({{\varvec{c}}}_{{\varvec{s}}{\varvec{i}}}\); \({\varvec{l}}\) and \({\varvec{m}}\) are the direction cosines along the x- and y-axis, respectively, and \({{\varvec{l}}}^{2}+{{\varvec{m}}}^{2}=1\). \({{\varvec{W}}}_{{\varvec{m}}}\) is the width of IA soliton and \({{\varvec{\Psi}}}_{{\varvec{m}}}\) is the amplitude of IA soliton which are defined as

$${{\varvec{\uppsi}}}_{{\varvec{m}}}=\frac{3{\varvec{V}}}{{\varvec{L}}{\varvec{l}}}\,{\mathrm{and}}\,{{\varvec{W}}}_{{\varvec{m}}}=\sqrt{\frac{4\left({\varvec{M}}{\varvec{m}}+{\varvec{N}}\right)}{{\varvec{V}}}}$$
(43)

It is evident that \({{\varvec{\Psi}}}_{{\varvec{m}}}\) and \({{\varvec{W}}}_{{\varvec{m}}}\) depend on the force potential applied in the concerned system. Therefore, for approximate solution, they can be related as follows

$${\varvec{\uppsi}}={{\varvec{\uppsi}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right){\mathbf{s}\mathbf{e}\mathbf{c}\mathbf{h}}^{2}\left(\frac{\stackrel{\sim }{{\varvec{\chi}}}}{{{\varvec{W}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right)}\right),$$
(44)

where \(\stackrel{\sim }{{\varvec{\chi}}}={\varvec{\xi}}{\varvec{l}}+{\varvec{\eta}}{\varvec{m}}-{\varvec{V}}\left({\varvec{\tau}}\right){\varvec{\tau}}\). In absence of external periodic force in the plasma system, \({\varvec{I}}={\int }_{-\boldsymbol{\infty }}^{+\boldsymbol{\infty }}{{\varvec{\uppsi}}}^{2}{\varvec{d}}{\varvec{\xi}}\) is a conserved quantity for the ZK equation. To investigate, the considerable influence of the external periodic force \({{\varvec{F}}}_{0}{\varvec{c}}{\varvec{o}}{\varvec{s}}\left(\boldsymbol{\varpi }{\varvec{\tau}}\right)\) on the propagation of IA wave is introduced. In the present state, due to the influence of periodic force, one can evaluate

$${\varvec{I}}={\int }_{-\boldsymbol{\infty }}^{+\boldsymbol{\infty }}{{\varvec{\uppsi}}}^{2}{\varvec{d}}{\varvec{\xi}},$$
(45)

and obtain, \({\varvec{I}}=\frac{4}{3}{{\varvec{\uppsi}}}_{{\varvec{m}}}^{2}\left({\varvec{\tau}}\right){{\varvec{W}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right)\). Hence,

$${\varvec{I}}=24\frac{\sqrt{\left({\varvec{M}}{\varvec{m}}+{\varvec{N}}\right)}}{{{\varvec{L}}}^{2}}{{\varvec{V}}\left({\varvec{\tau}}\right)}^{3/2}.$$
(46)

Differentiating (45) w. r. to \({\varvec{\tau}}\), one can find

$$\frac{{\varvec{d}}{\varvec{I}}}{{\varvec{d}}{\varvec{\tau}}}=24\frac{\sqrt{\left({\varvec{M}}{\varvec{m}}+{\varvec{N}}\right)}}{{\varvec{L}}}{{\varvec{F}}}_{0}{{\varvec{V}}\left({\varvec{\tau}}\right)}^{1/2}\mathbf{c}\mathbf{o}\mathbf{s}\left(\boldsymbol{\varpi }{\varvec{\tau}}\right).$$
(47)

Again differentiating (46) w. r. to \({\varvec{\tau}}\), one can determine that

$$\frac{{\varvec{d}}{\varvec{I}}}{{\varvec{d}}{\varvec{\tau}}}=36\frac{\sqrt{\left({\varvec{M}}{\varvec{m}}+{\varvec{N}}\right)}}{{{\varvec{L}}}^{2}}{{\varvec{V}}\left({\varvec{\tau}}\right)}^{1/2}\boldsymbol{ },$$
(48)

Comparing (47) and (48), it is obtained that

$$\frac{{\varvec{d}}{\varvec{V}}\left({\varvec{\tau}}\right)}{{\varvec{d}}{\varvec{\tau}}}=\frac{2{\varvec{L}}}{3}{{\varvec{F}}}_{0}\mathbf{c}\mathbf{o}\mathbf{s}\left(\boldsymbol{\varpi }{\varvec{\tau}}\right),$$
(49)

and by integrating (49), one can find

$${\varvec{V}}\left({\varvec{\tau}}\right)=\frac{2{\varvec{L}}}{3\boldsymbol{\varpi }}{{\varvec{F}}}_{0}\mathbf{s}\mathbf{i}\mathbf{n}\left(\boldsymbol{\varpi }{\varvec{\tau}}\right)+{{\varvec{V}}}_{0}.$$
(50)

where \({\varvec{\tau}}=0\), \({\varvec{V}}\left({\varvec{\tau}}\right)={{\varvec{V}}}_{0}\), and \({\varvec{V}}\left({\varvec{\tau}}\right)\) is the time-dependent velocity of IA wave propagating in the concerned plasma system. Therefore, the time-depending solution of the FZK equation can be expressed as:

$${\varvec{\uppsi}}={{\varvec{\uppsi}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right){\mathbf{s}\mathbf{e}\mathbf{c}\mathbf{h}}^{2}\left(\frac{\stackrel{\sim }{{\varvec{\chi}}}}{{{\varvec{W}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right)}\right).$$
(51)

where \(\stackrel{\sim }{{\varvec{\chi}}}={\varvec{\xi}}{\varvec{l}}+{\varvec{\eta}}{\varvec{m}}-{\varvec{V}}\left({\varvec{\tau}}\right){\varvec{\tau}}\).

The time-depending amplitude and width of the IA soliton propagating in the concerned plasma system due to the influence of the external periodic force are obtained as:

$${{\varvec{\uppsi}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right)=\frac{3{\varvec{V}}\left({\varvec{\tau}}\right)}{{\varvec{L}}{\varvec{l}}}\, {\mathrm{and}}\,{{\varvec{W}}}_{{\varvec{m}}}\left({\varvec{\tau}}\right)=2\sqrt{\frac{\left({\varvec{M}}{\varvec{m}}+{\varvec{N}}\right)}{{\varvec{V}}\left({\varvec{\tau}}\right)}},\,\mathrm{respectively}$$

This is a localized stationary solitary wave solution describing the formation and propagation of a nonlinear structure in a quantized degenerate plasma. This solution can only be obtained when nonlinearity and dispersion are balanced out.

Appendix B

The Hirota bilinear method is used to find the single- and multi-ZK soliton solution, because this method is more efficient and less complicated to obtain the multi-soliton solution. By the Hirota bilinear method (HBM), the exact solutions of the ZK equation can be determined; particularly, the multi-soliton solution can be determined by solving the system systematically with the help of the Hirota bilinear transformation. According to HBM, at first use dependent variable transformation to convert ZK equation into a couple bilinear equations and make the nonlinearity coefficient depart from the bilinear forms and become visible only as a scaling factor. The Hirota operators reduce the coupled bilinear equations into an algebraic equation and it can be solved easily. Finally, a perturbation scheme is employed for the dependent variable function, \({\varvec{f}}\), as:

$${\varvec{f}}=1+{\varvec{\epsilon}}{{\varvec{f}}}_{1}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right)+{{\varvec{\epsilon}}}^{2}{{\varvec{f}}}_{2}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right)+{{\varvec{\epsilon}}}^{3}{{\varvec{f}}}_{3}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right)+\cdots$$
(52)

where \({\varvec{\epsilon}}\) indicates the small perturbation parameter. The \({\varvec{n}}\) (\({\varvec{n}}=1,2,3,\cdots\))—solution can be found by solving the equations for different powers of \({\varvec{\epsilon}}\).The dependent variable transformation for the ZK equation exercise is [73]:

$$\begin{aligned}{{\varvec{D}}}_{{\varvec{\xi}}}^{{\varvec{p}}}{{\varvec{D}}}_{{\varvec{\eta}}}^{{\varvec{q}}}{{\varvec{D}}}_{{\varvec{\tau}}}^{{\varvec{r}}}\left({\varvec{\mu}},{\varvec{\nu}}\right)=&{\left(\frac{\partial }{\partial{\varvec{\xi}}}-\frac{\partial }{\partial {{\varvec{\xi}}}^{\boldsymbol{^{\prime}}}}\right)}^{{\varvec{p}}}{\left(\frac{\partial }{\partial{\varvec{\eta}}}-\frac{\partial }{\partial {{\varvec{\eta}}}^{\boldsymbol{^{\prime}}}}\right)}^{{\varvec{q}}}{\left(\frac{\partial }{\partial{\varvec{\tau}}}-\frac{\partial }{\partial {{\varvec{\tau}}}^{\boldsymbol{^{\prime}}}}\right)}^{{\varvec{r}}}\\&{\varvec{\mu}}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right){\varvec{\nu}}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right)\left|{}_{{{\varvec{\xi}}}^{\boldsymbol{^{\prime}}}={\varvec{\xi}},{{\varvec{\eta}}}^{\boldsymbol{^{\prime}}}={\varvec{\eta}},{{\varvec{\tau}}}^{\boldsymbol{^{\prime}}}={\varvec{\tau}}}\right..\end{aligned}$$
(53)

The subscripts \(\left({\varvec{\xi}},{\varvec{\eta}}\right)\) in Eq. (53) indicate the ordinary derivative w. r. to \({\varvec{\xi}}\) and \({\varvec{\eta}}\). Applying the transformation (52) for Eq. (37), one can find the following system of Hirota bilinear equations [73]

$$\left[{{\varvec{D}}}_{{\varvec{\xi}}}^{2}+\frac{1}{6}{\left(\frac{{\varvec{N}}}{{\varvec{M}}}\right)}^{1/2}{{\varvec{D}}}_{{\varvec{\xi}}}{{\varvec{D}}}_{{\varvec{\eta}}}-\frac{1}{6}\frac{{\varvec{N}}}{{\varvec{M}}}{{\varvec{D}}}_{{\varvec{\eta}}}^{2}\right]{\varvec{f}}.{\varvec{f}}=0,$$
(54)

and

$$\begin{aligned}&\left[3{\varvec{M}}{{\varvec{D}}}_{{\varvec{\xi}}}^{4}-\sqrt{{\varvec{M}}{\varvec{N}}}{{\varvec{D}}}_{{\varvec{\xi}}}^{3}{{\varvec{D}}}_{{\varvec{\eta}}}+3{\varvec{N}}{{\varvec{D}}}_{{\varvec{\xi}}}^{2}{{\varvec{D}}}_{{\varvec{\eta}}}^{2}-{\varvec{N}}\sqrt{\frac{{\varvec{N}}}{{\varvec{M}}}}{{\varvec{D}}}_{{\varvec{\xi}}}{{\varvec{D}}}_{{\varvec{\eta}}}^{3}\right.\\&\quad\left.+3{{\varvec{D}}}_{{\varvec{\xi}}}{{\varvec{D}}}_{{\varvec{\tau}}}-\sqrt{\frac{{\varvec{N}}}{{\varvec{M}}}}\boldsymbol{ }{{\varvec{D}}}_{{\varvec{\eta}}}{{\varvec{D}}}_{{\varvec{\tau}}}\right]{\varvec{f}}.{\varvec{f}}=0.\end{aligned}$$
(55)

where \({{\varvec{D}}}_{{\varvec{\xi}}}\), \({{\varvec{D}}}_{{\varvec{\eta}}}\), and \({{\varvec{D}}}_{{\varvec{\tau}}}\) are the bilinear Hirota derivative operators defined as:

$${{\varvec{D}}}_{{\varvec{\xi}}}^{{\varvec{p}}}{{\varvec{D}}}_{{\varvec{\eta}}}^{{\varvec{q}}}{{\varvec{D}}}_{{\varvec{\tau}}}^{{\varvec{r}}}\left({\varvec{\mu}},{\varvec{\nu}}\right)={\left(\frac{\partial }{\partial{\varvec{\xi}}}-\frac{\partial }{\partial {{\varvec{\xi}}}^{\boldsymbol{^{\prime}}}}\right)}^{{\varvec{p}}}{\left(\frac{\partial }{\partial{\varvec{\eta}}}-\frac{\partial }{\partial {{\varvec{\eta}}}^{\boldsymbol{^{\prime}}}}\right)}^{{\varvec{q}}}{\left(\frac{\partial }{\partial{\varvec{\tau}}}-\frac{\partial }{\partial {{\varvec{\tau}}}^{\boldsymbol{^{\prime}}}}\right)}^{{\varvec{r}}}{\varvec{\mu}}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right){\varvec{\nu}}\left({\varvec{\xi}},{\varvec{\eta}},{\varvec{\tau}}\right)\left|{}_{{{\varvec{\xi}}}^{\boldsymbol{^{\prime}}}={\varvec{\xi}},{{\varvec{\eta}}}^{\boldsymbol{^{\prime}}}={\varvec{\eta}},{{\varvec{\tau}}}^{\boldsymbol{^{\prime}}}={\varvec{\tau}}}\right..$$
(56)

Here, \({\varvec{p}}\), \({\varvec{q}}\), and \({\varvec{r}}\) are positive integers.

One-soliton solution: In order to determine the one-soliton solution for Eq. (37), one can assume

$${{\varvec{f}}}_{1}={{\varvec{e}}}^{\mathbf{\rm X}},$$
(57)

where \(\boldsymbol{\rm X}={\varvec{k}}{\varvec{\xi}}+{\varvec{A}}{\varvec{\eta}}+{\varvec{B}}{\varvec{\tau}}\), \({\varvec{k}}\) and \({\varvec{A}}\) are the real arbitrary constants indicating the propagation constant vectors along \({\varvec{x}}\)- and \({\varvec{y}}\)-axes, respectively. Employing \({{\varvec{f}}}_{1}\) in \({\varvec{\epsilon}}\)-order of (55) and (56), one can determine

$${\varvec{A}}=-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}\boldsymbol{ }{\varvec{k}}\ \boldsymbol{ }{\varvec{a}}{\varvec{n}}{\varvec{d}}\ \boldsymbol{ }{\varvec{B}}=-5\mathbf{M}{\mathbf{k}}^{3}.$$
(58)

Expression of \({\varvec{f}}\) (given by 52) abbreviates for the choice of \({{\varvec{f}}}_{1}\) (given by Eq. (57)) and the higher order functions evaporate. With the help of \({\varvec{A}}\) and \({\varvec{B}}\), the function \({\varvec{f}}\) becomes:

$${\varvec{f}}=1+\mathbf{e}\mathbf{x}\mathbf{p}\left(\mathbf{k}{\varvec{\upxi}}-2\sqrt{\frac{\mathbf{M}}{\mathbf{N}}}{\varvec{k}}{\varvec{\eta}}-5\mathbf{M}{\mathbf{k}}^{3}{\varvec{\tau}}\right).$$
(59)

Therefore, transformation (53) gives the single-soliton solution

$${{\varvec{\Phi}}}_{{\varvec{s}}{\varvec{s}}}^{\left(1\right)}=\frac{15{\varvec{M}}}{{\varvec{L}}}{{\varvec{k}}}^{2}{\mathbf{s}\mathbf{e}\mathbf{c}\mathbf{h}}^{2}\left(\frac{\mathbf{k}}{2}{\varvec{\upxi}}-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}\boldsymbol{ }{\varvec{k}}{\varvec{\eta}}-\frac{5}{2}\mathbf{M}{\mathbf{k}}^{3}{\varvec{\tau}}\right).$$
(60)

From (60), the amplitude \({{\varvec{\Phi}}}_{{\varvec{m}}}\), width \({{\varvec{W}}}_{{\varvec{m}}}=\frac{2}{\sqrt{{{\varvec{k}}}^{2}+{{\varvec{A}}}^{2}}}\), and velocity \({\varvec{v}}=\left(\frac{-{\varvec{B}}{\varvec{k}}}{{{\varvec{k}}}^{2}+{{\varvec{A}}}^{2}},\frac{{\varvec{A}}{\varvec{B}}}{{{\varvec{k}}}^{2}+{{\varvec{A}}}^{2}}\right)\) of the single-solitary wave are

$${{\varvec{\Phi}}}_{{\varvec{m}}}=\frac{15{\varvec{M}}}{{\varvec{L}}}{{\varvec{k}}}^{2},\boldsymbol{ }{{\varvec{W}}}_{{\varvec{m}}}=\frac{2\sqrt{{\varvec{N}}}}{\sqrt{\left(4{\varvec{M}}+{\varvec{N}}\right)}\left|{\varvec{k}}\right|},$$
(61)
$$\mathbf{a}\mathbf{n}\mathbf{d}\ \boldsymbol{ }{\varvec{v}}=\left({{\varvec{v}}}_{{\varvec{\xi}}},{{\varvec{v}}}_{{\varvec{\eta}}}\right)=\left(-\frac{{\varvec{M}}{\varvec{N}}{{\varvec{k}}}^{2}}{4{\varvec{M}}+{\varvec{N}}},\frac{2{\varvec{M}}{{\varvec{k}}}^{2}\sqrt{{\varvec{B}}{\varvec{C}}}}{4{\varvec{M}}+{\varvec{N}}}\right),$$
(62)

respectively.

Double-soliton solution: For double-soliton solution, let us consider

$${{\varvec{f}}}_{1}={{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}\,{\mathrm{and}}\,{{\varvec{f}}}_{2}={{\varvec{a}}}_{12}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}.$$
(63)

where \({{\varvec{a}}}_{12}\) is the interaction parameter,\({{\varvec{\upchi}}}_{{\varvec{i}}}={{\varvec{k}}}_{\mathbf{i}}{\varvec{\upxi}}+{{\varvec{A}}}_{\mathbf{i}}{\varvec{\eta}}+{{\varvec{B}}}_{\mathbf{i}}{\varvec{\tau}}\) (\({\varvec{i}}=\) 1, 2). The expression \({\varvec{f}}\) given by (52) for two solitons abbreviates at \({{\varvec{f}}}_{2}\) for the choice of \({{\varvec{f}}}_{1}\) and \({{\varvec{f}}}_{2}\) and all higher order functions disappear; therefore,

$${\varvec{f}}=1+{\varvec{\epsilon}}{{\varvec{f}}}_{1}+{{\varvec{\epsilon}}}^{2}{{\varvec{f}}}_{2}.$$
(64)

Inserting \({\varvec{f}}\) in (54) and (55) and then solving for first order of \({\varvec{\epsilon}}\), one can determine that

$${{\varvec{A}}}_{1}=-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}{{\varvec{k}}}_{1},\boldsymbol{ }{{\varvec{A}}}_{2}=-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}{{\varvec{k}}}_{2},\boldsymbol{ }{{\varvec{B}}}_{1}=-5{\varvec{M}}{{\varvec{k}}}_{1}^{3},\ \boldsymbol{ }\mathbf{a}\mathbf{n}\mathbf{d}\ \boldsymbol{ }{{\varvec{B}}}_{2}=-5{\varvec{M}}{{\varvec{k}}}_{2}^{3}.$$
(65)

Now comparing the terms contain \({{\varvec{\epsilon}}}^{2}\) yields,

$${{\varvec{a}}}_{12}=\frac{{\left({{\varvec{k}}}_{1}-{{\varvec{k}}}_{2}\right)}^{2}}{{\left({{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}\right)}^{2}}.$$
(66)
$$\begin{aligned}\mathbf{H}\mathbf{e}\mathbf{n}\mathbf{c}\mathbf{e},=&1+{{\varvec{e}}}^{{{\varvec{k}}}_{1}{\varvec{\xi}}-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}{{\varvec{k}}}_{1}{\varvec{\eta}}-5{\varvec{M}}{{\varvec{k}}}_{1}^{3}{\varvec{\tau}}}+{{\varvec{e}}}^{{{\varvec{k}}}_{2}{\varvec{\xi}}-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}{{\varvec{k}}}_{2}{\varvec{\eta}}-5{\varvec{M}}{{\varvec{k}}}_{2}^{3}{\varvec{\tau}}}\\&+\frac{{\left({{\varvec{k}}}_{1}-{{\varvec{k}}}_{2}\right)}^{2}}{{\left({{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}\right)}^{2}}{{\varvec{e}}}^{\left[\left({{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}\right){\varvec{\xi}}-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}\left({{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}\right){\varvec{\eta}}-5{\varvec{M}}\left({{\varvec{k}}}_{1}^{3}+{{\varvec{k}}}_{2}^{3}\right){\varvec{\tau}}\right]},\end{aligned}$$
(67)

which gives the double-soliton solution of the ZK equation with the help of the transformation (53) as:

$${{\varvec{\Phi}}}_{{\varvec{d}}{\varvec{s}}}^{\left(1\right)}=\frac{36{\varvec{M}}}{{\varvec{L}}}{\left[{\varvec{F}}\left({{\varvec{\upchi}}}_{1},{{\varvec{\upchi}}}_{2}\right)\right]}_{{\varvec{\xi}}{\varvec{\xi}}}-\frac{12\sqrt{{\varvec{M}}{\varvec{N}}}}{{\varvec{L}}}{\left[{\varvec{F}}\left({{\varvec{\upchi}}}_{1},{{\varvec{\upchi}}}_{2}\right)\right]}_{{\varvec{\xi}}{\varvec{\eta}}},$$
(68)

where,

$${\varvec{F}}\left({{\varvec{\upchi}}}_{1},{{\varvec{\upchi}}}_{2}\right)=\mathbf{l}\mathbf{n}\left\{1+{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}+{{\varvec{a}}}_{12}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}\right\}$$
$$\begin{aligned}&{\left[{\varvec{F}}\left({{\varvec{\upchi}}}_{1},{{\varvec{\upchi}}}_{2}\right)\right]}_{{\varvec{\xi}}{\varvec{\xi}}}\\&\quad=\frac{{{\varvec{k}}}_{1}^{2}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{k}}}_{2}^{2}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}+\left[{\left({{\varvec{k}}}_{1}-{{\varvec{k}}}_{2}\right)}^{2}+{{\varvec{a}}}_{12}\left\{{\left({{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}\right)}^{2}+{{{\varvec{k}}}_{2}^{2}{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{k}}}_{1}^{2}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}\right\}\right]{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}}{{\left(1+{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}{+{\varvec{a}}}_{12}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}\right)}^{2}},\end{aligned}$$
$$\begin{aligned}&{\left[{\varvec{F}}\left({{\varvec{\upchi}}}_{1},{{\varvec{\upchi}}}_{2}\right)\right]}_{{\varvec{\xi}}{\varvec{\eta}}}\\&\quad=\frac{-{\varvec{l}}\left({{\varvec{k}}}_{1}^{2}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{k}}}_{2}^{2}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}\right)-{\varvec{l}}\left[{\left({{\varvec{k}}}_{1}-{{\varvec{k}}}_{2}\right)}^{2}+{{\varvec{a}}}_{12}\left\{{\left({{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}\right)}^{2}+{{{\varvec{k}}}_{2}^{2}{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{k}}}_{1}^{2}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}\right\}\right]{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}}{{\left(1+{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}}+{{\varvec{e}}}^{{{\varvec{\upchi}}}_{2}}{+{\varvec{a}}}_{12}{{\varvec{e}}}^{{{\varvec{\upchi}}}_{1}+{{\varvec{\upchi}}}_{2}}\right)}^{2}},\end{aligned}$$
$$\begin{aligned}{\varvec{l}}=&2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}},\boldsymbol{ }{{\varvec{\chi}}}_{{\varvec{i}}}={{\varvec{k}}}_{{\varvec{i}}}{\varvec{\xi}}-2\sqrt{\frac{{\varvec{M}}}{{\varvec{N}}}}{{\varvec{k}}}_{{\varvec{i}}}{\varvec{\eta}}-5{\varvec{M}}{{\varvec{k}}}_{{\varvec{i}}}^{3}{\varvec{\tau}}\boldsymbol{ }\left({\varvec{i}}=1,2\right)\\&\,{\mathrm{and}}\,{{\varvec{a}}}_{12}={\left(\frac{{{\varvec{k}}}_{1}-{{\varvec{k}}}_{2}}{{{\varvec{k}}}_{1}+{{\varvec{k}}}_{2}}\right)}^{2}.\end{aligned}$$

Solution (68) represents the overtaking collision of two IA solitons.

Proceeding in similar manner as above, one can determine the triple-soliton and quadruple-soliton solutions of the ZK equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.S., Talukder, M.R. Propagation and Collision Phenomena of Ion Acoustic ZK Solitons in Quantum Plasmas: Effects of External Force and Exchange–Correlation Potential of Degenerate Electrons. Braz J Phys 52, 143 (2022). https://doi.org/10.1007/s13538-022-01124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01124-5

Keywords

Navigation