Skip to main content

Advertisement

Log in

Optical Properties on the Ferroelectric Perovskite Materials: a Study for Photovoltaic Applications

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Ferroelectric and multiferroic magnetoelectric materials Pb(ZrxTi1-x)O3, BiFeO3–PbTiO3, BiFeO3 PbTiO3, and PbZrO3 with perovskite structure were synthetized, and their optical and structural properties were investigated aiming photovoltaic applications. Single-phase structural properties were observed on the Pb(ZrxTi1-x)O3 and BiFeO3–PbTiO3 systems in their respective regions on phase diagram. Alternative photoacoustic spectroscopy was used to investigate optical properties of the compounds in powder state. Intense absorption was observed in the photoacoustic signal on the visible region of the electromagnetic spectrum. Interesting energy gap was observed in the BiFeO3 (Eg = 1.50 eV) and BiFeO3–PbTiO3 (Eg = 1.53 eV), which are remarkably close to the optimized value (Eg = 1.32 eV) to maximize the photovoltaic efficiency of the theory Shockley-Queisser. The physical mechanisms that distort the structure promote ferroelectricity and remodel the structures of energy bands have been pointed out and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References 

  1. L.J. Sonter, M.C. Dade, J.E.M. Watson, R.K. Valenta, Nat. Commun. 11, 6 (2020)

    Article  Google Scholar 

  2. E. Despotou, Vision for Photovoltaics in the Future (Elsevier Ltd., 2012)

  3. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1, 15007 (2016)

    Article  ADS  Google Scholar 

  4. R. Fu, W. Zhou, Q. Li, Y. Zhao, D. Yu, Q. Zhao, ChemNanoMat 5, 253 (2019)

    Article  Google Scholar 

  5. M.A. Jalaja, S. Dutta, Advan. Mat. Lett. 6, 568 (2015)

  6. M. Bibes, A. Barthélémy, Nature Materials 7(425), 568 (2008)

    Google Scholar 

  7. J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2, 17042 (2017)

  8. G. Gasparotto, A.Z. Simões, M.A. Zaghete, L. Perazolli, J.A. Varela, E. Longo, Cerâmica 49, 110 (2003)

    Article  Google Scholar 

  9. S.R. de Lázaro, E. Longo, A. Beltran, J.R. Sambrano, Quím. Nova. 28, 10 (2005)

    Article  Google Scholar 

  10. S. De Lazaro, E. Longo, J.R. Sambrano, A. Beltrán, Surf. Sci. 552, 149 (2004)

    Article  ADS  Google Scholar 

  11. B. Noheda, J.A. Gonzalo, R. Guo, S.E. Park, L.E. Cross, D.E. Cox, G. Shirane, AIP Conf. Proc. 535, 304 (2000)

    Article  ADS  Google Scholar 

  12. B. Noheda, J. Gonzalo, L. Cross, R. Guo, S. Park, Phys. Rev. B - Condens Matter. Mater. Phys. 61, 8687 (2000)

    Article  ADS  Google Scholar 

  13. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980)

    Article  ADS  Google Scholar 

  14. W.M. Zhu, H.Y. Guo, Z.G. Ye, J. Mat. Res. 22, 2136 (2007)

    Article  ADS  Google Scholar 

  15. A.Y. Kim, S.H. Han, J.S. Kim, and C. Il Cheon. J. Korean Ceram. Soc. 48, 307 (2011)

    Article  Google Scholar 

  16. V.F. Freitas, D.Z. Montanher, T.G. M. Bonadio, V.L. Mazzocchi, J. Mestnik-Filho, C.B.R. Parente, D. Garcia, J.A. Eiras, L.F. Cótica, I.A. Santos, J. Appl. Phys. 114, 134102 (2013)

  17. L.F. Cótica, V.F. Freitas, O.A. Protzek, J.A. Eiras, D. Garcia, F. Yokaichiya, I.A. Santos, R. Guo, A.S. Bhalla, J. Appl. Phys. 116, 034107 (2014)

  18. W.M. Zhu, Z.G. Ye, Ceram. Int. 30, 1435 (2004)

    Article  Google Scholar 

  19. L.F. Cótica, F.R. Estrada, V.F. Freitas, G.S. Dias, I.A. Santos, J.A. Eiras, D. Garcia, J. Appl. Phys. 111, 114105 (2012)

  20. V.F. Freitas, I.A. Santos, É. Botero, B.M. Fraygola, D. Garcia, J.A. Eiras, J. Am. Ceram. Soc. 94, 754 (2011)

    Article  Google Scholar 

  21. V.F. Freitas, E.A.C. Astrath, L.C. Dias, M. Manzur, G.B. Souza, T.G.M. Bonadio, J.A. Eiras, D.M. Silva, J.H. Rohling, G.S. Dias, L.F. Cótica, I.A. Santos, Braz. J. Phys. 52, 1215 (2021)

  22. V.F. Freitas, T.G.M. Bonadio, G.S. Dias, O.A. Protzek, A.N. Medina, L.F. Cótica, I.A. Santos, D. Garcia, J.A. Eiras, J. Appl. Phys. 113, 114105 (2013)

  23. S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)

  24. C.C. Nascimento, R.E.S. Bretas, M.R. Morelli, S. Carlos, Cerâm. 65, 45 (2019)

    Article  Google Scholar 

  25. F. Wang, I. Grinberg, A.M. Rappe, J. Appl. Phys. 104, 15 (2014)

    Google Scholar 

  26. E. Raphaela, M.N. Silva, R. Szostakb, M.A. Schiavona, A.F. Nogueira, Quim. Nova 41, 61 (2018)

    Google Scholar 

  27. A.A. Lima, N.P. Menezes, S. Santos, B. Amorim, F. Thomazi, F. Zanella, A. Heilmann, E. Burkarter, C.A. Dartora, Rev. Bras. Ensino Fís. 42, (2020)

  28. S. Rühle, Sol. Energy 130, 139 (2016)

    Article  ADS  Google Scholar 

  29. C. A. Gueymard, Solar Energy 86, 2145 (2012)

  30. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley & Sons Inc, New York, 1980)

    Google Scholar 

  31. Y.Y. Peter, M. Cardona, Fundamentals of Semiconductors: Phys. Mater. Proper. 4th ed, (Springer US, Berlin, 2010)

  32. P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, A. Ferreira Da Silva, App. Phys. Lett. 96, 10 (2010)

    Article  Google Scholar 

  33. E.C. Paris, E.R. Leite, E. Longo, J.A. Varela, Mater. Lett. 37, 1 (1998)

    Article  Google Scholar 

  34. X. Lu, T.S. Pine, D.R. Mumm, J. Brouwer, Sol. State Ion. 178, 1195 (2007)

    Article  Google Scholar 

  35. J. Tauc, Mater. Res. Bull. 34, 78 (1968)

    Google Scholar 

  36. W. Shockley, H.J. Queisser, J. App. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  37. S.A. Mabud, A.M. Glazer, J. Appl. Crystallogr. 12, 49 (1979)

    Article  Google Scholar 

  38. R.E. Cohen, Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

  39. J. Baedi, S.M. Hosseini, A. Kompany, Comput. Mater. Sci. 43, 909 (2008)

    Article  Google Scholar 

  40. S. Samanta, V. Sankaranarayanan, K. Sethupathi, Vacuum 156, 456 (2018)

    Article  ADS  Google Scholar 

  41. K.P. Ong, S. Wu, T.H. Nguyen, D.J. Singh, Z. Fan, M.B. Sullivan, C. Dang, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  42. V.S. Puli, D.K. Pradhan, R.K. Katiyar, I. Coondoo, N. Panwar, P. Misra, D.B. Chrisey, J.F. Scott, R.S. Katiyar, J. Phys D: App. Phys. 47, 075502 (2014)

  43. V.F. Freitas, O.A. Protzek, L.A. Montoro, A.M. Gonçalves, D. Garcia, J.A. Eiras, R. Guo, A.S. Bhalla, L.F. Cótica, I.A. Santos, J Mater. Chem. C 2, 364 (2014)

  44. D.L. Wang, H.J. Cui, G.J. Hou, Z.G. Zhu, Q.B. Yan, G. Su, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  45. R. Gupta, D. Singh, R.K. Singh, K.K. Bamzai, J. Electro. ceram. 3, 235 (2018)

    Article  Google Scholar 

  46. K.H. Omran, M. Mostafa, M.S.A. El-sadek, O.M. Hemeda, R. Ubic, Res. Phys. 19, 103580 (2020)

  47. S. Monga, S. Tomar, P.M. Vilarinho, A. Singh, Mater. Today: Proc. 36(3), 616 (2020)

  48. T. Kiguchi, N. Wakiya, K. Shinozaki, T.J. Konno, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 161, 160 (2009)

  49. K.Y. Chan, W.S. Tsang, C.L. Mak, K.H. Wong, P.M. Hui, Phys. Rev. B - Condens. Matter Mater. Phys. 69, 1 (2004)

  50. L. Yan-Ting, R. Bo, Z. Xiang-Yong, W. Fei-Fei, W. Yao-Jin, X. Hai-Qing, L. Di, L. Hao-Su, Chinese Phys. Lett. 26, 5 (2009)

    Article  Google Scholar 

  51. J.J. Zhu, W.W. Li, G.S. Xu, K. Jiang, Z.G. Hu, J.H. Chu, Acta Mater. 59, 6684 (2011)

    Article  ADS  Google Scholar 

  52. H. Tan, H. Takenaka, C. Xu, W. Duan, I. Grinberg, A.M. Rappe, Phys. Rev. B 97, 1 (2018)

    Google Scholar 

  53. L. Reséndiz, V.S. Balderrama, G. Lastra, M. Ramírez, V. Cabrera, M. Estrada, Sol. State Elec. 153, 33 (2019)

  54. J. Sun, P. Cai, F. Pan, L. Zhang, Z. Liu, Z. Liu, Y. Cao, J. Chen, A.C.S. Appl. Mater. Interfaces 10, 11094 (2018)

    Article  Google Scholar 

  55. P. Sonar, T.J. Ha, A. Dodabalapur, Chem. Commun. 49, 1588 (2013)

    Article  Google Scholar 

  56. M.D. Durruthy-Rodríguez, J. Costa-Marrero, M. Hernández-García, F. Calderón-Piñar, J.M. Yañez-Limón, Appl. Phys. A Mater. Sci. Process. 98, 543 (2010)

    Article  ADS  Google Scholar 

  57. A. Khodorov, M.J.M. Gomes, Ferroelectr. 360, 31 (2007)

  58. H. Lee, Y.S. Kang, S.J. Cho, B. Xiao, H. Morko̧, T.D. Kang, G.S. Lee, J. Li, S.H. Wei, P.G. Snyder, J.T. Evans, J. Appl. Phys. 98, 094108 (2005)

Download references

Acknowledgements

The authors would like to thank CNPq (procs. 409184/2018-7 and 30128/2017-3) and FAADCT/PR (CP 09/16 PBA) Brazilian agencies for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Freitas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stimer, C., de Oliveira, V.A., Dias, L.C. et al. Optical Properties on the Ferroelectric Perovskite Materials: a Study for Photovoltaic Applications. Braz J Phys 51, 1428–1437 (2021). https://doi.org/10.1007/s13538-021-00954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00954-z

Keywords

Navigation