Skip to main content
Log in

Comparative Studies on Spectroscopic and Crystallization Properties of Al2O3 -Li2O- B2O3-TiO2 Glasses

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The conventional technique has been used to prepare a quaternary glass based on the chemical composition 5Al2O3-\((10+x)\) Li2O-\((70 - x)\) B2O3-15TiO2 \(:(0\le x\le 25)\) mol.%. The Fourier transform infrared spectrometer spectra were investigated for the structural change of these glasses. Ultraviolet spectroscopic at ambient temperature of the investigated glass system. The optical bandgap and refractive index of these glasses were decreased, while Urbach energy was increased. The polarizability and basicity of these glasses have been established. To demonstrate the influence of titanium oxide on dispersion parameters, these glasses were applied. Under controlled heating, the glass–ceramic was prepared and investigated using X-ray diffraction and mechanical characteristic. Glass–ceramic surface morphology has been examined by scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Khajonrit, A. Montreeuppathum, P. Kidkhunthod, N. Chanlek, Y. Poo-arporn, S. Pinitsoontorn, S. Maensiri, New transparent materials for applications as supercapacitors: manganese-lithium-borate glasses. J. Alloy. Compd. 763, 199–208 (2018). https://doi.org/10.1016/j.jallcom.2018.05.300

    Article  Google Scholar 

  2. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3–30Li2O–5Al2O3) glasses doped with titanate. J. Elec. Mater. 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

    Article  ADS  Google Scholar 

  3. K.S. Shaaban, S.M. Abo-Naf, M.E.M. Hassouna, Physical and structural properties of lithium borate glasses containing MoO3. Silicon 11, 2421–2428 (2019). https://doi.org/10.1007/s12633-016-9519-4

    Article  Google Scholar 

  4. A.M. Abdelghany, The elusory role of low-level doping transition metals in lead silicate glasses. Silicon 2, 179–184 (2010). https://doi.org/10.1007/s12633-010-9053-8

    Article  Google Scholar 

  5. A.M. Ibrahim, A.H. Hammad, A.M. Abdelghany, G.O. Rabie, Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. J. Non-Cryst. Solids 495, 67–74 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.05.015

    Article  ADS  Google Scholar 

  6. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban et al., Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30–x) BaO-x ZnO glass system. Appl. Phys. A 125, 275 (2019). https://doi.org/10.1007/s00339-019-2574-0

    Article  ADS  Google Scholar 

  7. K.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, M.E.M Hassouna, (2017). Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl. Phys. A 123(6) (2017). https://doi.org/10.1007/s00339-017-1052-9

  8. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman et al., Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl. Phys. A 125, 869 (2019). https://doi.org/10.1007/s00339-019-3166-8

    Article  ADS  Google Scholar 

  9. A.M. Abdelghany, Y.S. Rammah, Transparent alumino lithium borate glass-ceramics: synthesis, structure and gamma-ray shielding attitude. J Inorg. Organomet. Polym. (2021). https://doi.org/10.1007/s10904-020-01862-6

    Article  Google Scholar 

  10. R. Divina, K.A. Naseer, K. Marimuthu et al., Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J. Mater. Sci: Mater. Electron. 31, 21486–21501 (2020). https://doi.org/10.1007/s10854-020-04662-3

    Article  Google Scholar 

  11. M.S. AlBuriahi, H.H. Hegazy, I.O. Faisal Alresheedi, H. Olarinoye, H.O. Algarni, Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.168

    Article  Google Scholar 

  12. G. Lakshminarayana, H.O. Ashok Kumar, S.A.M. Tekin, M.S. Issa, D.-E. Al-Buriahi, J. Yoon, T. Park, Binary B2O3–Bi2O3 glasses: scrutinization of directly and indirectly ionizing radiations shielding abilities. J. Market. Res. 9(6), 14549–14567 (2020). https://doi.org/10.1016/j.jmrt.2020.10.019

    Article  Google Scholar 

  13. M.S. Al-Buriahi, H.H. Somaily, A. Alalawi et al., Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01750-z

    Article  Google Scholar 

  14. M.S. Al-Buriahi, Y.S.M. Alajerami, A.S. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120171

    Article  Google Scholar 

  15. A.S. Abouhaswa, M.H.A. Mhareb, A. Alalawi, M.S. Al-Buriahi, Physical, structural, optical, and radiation shielding properties of B2O3-20Bi2O3-20Na2O2-Sb2O3 glasses: role of Sb2O3. J. Non-Cryst. Solids 543, 120130 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120130

    Article  Google Scholar 

  16. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Influence of Bi2O3 concentration on barium-telluro-borate glasses: physical, structural and radiation-shielding properties. Ceram. Int. 47(1), 329–340 (2020). https://doi.org/10.1016/j.ceramint.2020.08.138

    Article  Google Scholar 

  17. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.240

  18. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan et al., Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126, 68 (2020). https://doi.org/10.1007/s00339-019-3254-9

    Article  ADS  Google Scholar 

  19. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, B.T. Tonguc, Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.091

    Article  Google Scholar 

  20. A.M. Abdelghany, H.A. Elbatal, Effect of TiO2 doping and gamma ray irradiation on the properties of SrO–B2O3 glasses. J. Non-Cryst. Solids 379, 214–219 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.08.020

    Article  ADS  Google Scholar 

  21. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses. Opt. Quant. Electron. 52, 125 (2020). https://doi.org/10.1007/s11082-020-2191-3

    Article  Google Scholar 

  22. E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater. Res. Exp. 5(2), 025207 (2018). https://doi.org/10.1088/2053-1591/aaaee8

    Article  Google Scholar 

  23. K. Shaaban, E.A. Abdel Wahab, A.A. El-Maaref et al., Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J. Mater. Sci. Mater. Electron 31, 4986–4996 (2020). https://doi.org/10.1007/s10854-020-03065-8

    Article  Google Scholar 

  24. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nano metal oxides. J. Non-Cryst. Solids 528, 119754 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119754

    Article  Google Scholar 

  25. D. Singh, K. Singh, B.S. Bajwa, G.S. Mudahar, D.P. Singh, D. Manupriya, V. K. , Optical and structural properties of Li2O–Al2O3–B2O3 glasses before and after γ-irradiation effects. J. Appl. Phys. 104(10), 103515 (2008). https://doi.org/10.1063/1.3003070

    Article  ADS  Google Scholar 

  26. K.S. Shaaban, E.S. Yousef, S.A. Mahmoud, et al., Mechanical, structural and crystallization properties in titanate doped phosphate glasses. J. Inorg. Organomet. Polym. (2020) https://doi.org/10.1007/s10904-020-01574-x

  27. K.S. Shaaban, E.S. Yousef, Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik 203, 163976 (2020). https://doi.org/10.1016/j.ijleo.2019.163976

    Article  ADS  Google Scholar 

  28. K.S. Shaaban, E.S. Yousef, E.A. Abdel Wahab et al., Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions xFe2O3-35SiO2-35B2O3-10Al2O3-(20–x) Na2O. J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04969-6

    Article  Google Scholar 

  29. A.F.A. El-Rehim, K.S. Shaaban, H.Y. Zahran et al., Structural and mechanical properties of lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass–ceramics. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01708-1

    Article  Google Scholar 

  30. A.M. Abdelghany, H.A. Elbatal, F.M. Ezzeldin, Influence of CuO content on the structure of lithium fluoroborate glasses: spectral and gamma irradiation studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 788–792 (2015). https://doi.org/10.1016/j.saa.2015.04.105

    Article  Google Scholar 

  31. A.M. Abdelghany, F.H. Elbatal, H.A. Elbatal, F.M. Ezzeldin, Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study. J. Mol. Struct. 1074, 503–510 (2014). https://doi.org/10.1016/j.molstruc.2014.06.011

    Article  ADS  Google Scholar 

  32. C. Julien, M. Massot, W. Balkanski, A. Krol, W. Nazarewicz, Infrared studies of the structure of borate glasses. Mater. Sci. Eng. B 3(3), 307–312 (1989). https://doi.org/10.1016/0921-5107(89)90026-3

    Article  Google Scholar 

  33. N.S. Prabhu, V. Hegde, A. Wagh, M.I. Sayyed, O. Agar, S.D. Kamath, Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. J. Non-Cryst. Solids 515, 116–124 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.04.015

    Article  ADS  Google Scholar 

  34. D. Ehrt, Structure, properties and applications of borate glasses. Glass Technol. 41, 182–185 (2000). https://www.researchgate.net/publication/233520526

  35. N. Gupta, A. Kaur, A. Khanna, F. Gonzàlez, C. Pesquera, R. Iordanova, B. Chen, Structure-property correlations in TiO2-Bi2O3-B2O3-TeO2 glasses. J. Non-Cryst. Solids 470, 168–177 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.021

    Article  ADS  Google Scholar 

  36. K.S. Shaaban, I. Boukhris, I. Kebaili, M.S. Al-Buriahi, Spectroscopic and attenuation shielding studies on B2O3-SiO2-LiF-ZnO-TiO2 glasses. Silicon (2021). https://doi.org/10.1007/s12633-021-01080-w

    Article  Google Scholar 

  37. K.S. Shaaban, M.S.I. Koubisy, H.Y. Zahran et al., Spectroscopic properties, electronic polarizability, and optical basicity of titanium–cadmium tellurite glasses doped with different amounts of lanthanum. J Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01640-4

    Article  Google Scholar 

  38. R.S. Gedam, D.D. Ramteke, Synthesis and characterization of lithium borate glasses containing La2O3. Trans.. Indian Inst. Met. 65, 31–35 (2012). https://doi.org/10.1007/s12666-011-0107-4

    Article  Google Scholar 

  39. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci. Mater. Electron 31(9), 6963–6976 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  Google Scholar 

  40. M.S. Sultan Alomairy, E.A.A. Al-Buriahi, C.S. Wahab, K. Shaaban, Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.045

    Article  Google Scholar 

  41. A.M. Abdelghany, M.A. Ouis, M.A. Azooz, H.A. Elbatal, G.T. El-Bassyouni, Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 126–133 (2016). https://doi.org/10.1016/j.saa.2015.07.072

    Article  ADS  Google Scholar 

  42. A.A. El-Maaref, S. Badr, K.S. Shaaban, E.A.A. Wahab, M.M. ElOkr, Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses. J. Rare Earths 37(3), 253–259 (2019). https://doi.org/10.1016/j.jre.2018.06.006

    Article  Google Scholar 

  43. H.A. Elbatal, A.M. Abdelghany, F.H. Elbatal, F.M. Ezzeldin, Gamma rays interactions with WO3-doped lead borate glasses. Mater. Chem. Phys. 134, 542–548 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.032

    Article  Google Scholar 

  44. F.H. Elbatal, A.M. Abdelghany, H.A. Elbatal, Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 461–468 (2014). https://doi.org/10.1016/j.saa.2013.11.011

    Article  ADS  Google Scholar 

  45. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef, Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 242, 118774 (2020). https://doi.org/10.1016/j.saa.2020.118774

    Article  Google Scholar 

  46. M. Mahmoud, S.A. Makhlouf, B. Alshahrani, H.A. Yakout, K.S. Shaaban, E.A.A. Wahab, Experimental and simulation investigations of mechanical properties and gamma radiation shielding of lithium cadmium gadolinium silicate glasses doped erbium ions. Silicon (2021). https://doi.org/10.1007/s12633-021-01062-y

    Article  Google Scholar 

  47. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324–1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  ADS  Google Scholar 

  48. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736 (1996). https://doi.org/10.1063/1.360962

    Article  ADS  Google Scholar 

  49. V. Dimitrov, T. Komatsu, Classification of Simple Oxides: A Polarizability Approach. J. Solid-State Chem. 163(1), 100 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  ADS  Google Scholar 

  50. L. Singh, V. Thakur, R. Punia, R.S. Kundu, A. Singh, Structural and optical properties of barium titanate modified bismuth borate glasses. Solid State Sci. 37, 64 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.08.010

    Article  ADS  Google Scholar 

  51. X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 392(1–2), 132–136 (2007). https://doi.org/10.1016/j.physb.2006.11.015

    Article  ADS  Google Scholar 

  52. K.S. Shaaban, S. Alomairy, M.S. Al-Buriahi, Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J. Mater. Sci. Mater. Electron. (2021) https://doi.org/10.1007/s10854-021-05885-8

  53. A.M. Abdelghany, A. Behairy, Optical parameters, antibacterial characteristics, and structure correlation of copper ions in cadmium borate glasses. J. Market. Res. 9, 10491–10497 (2020). https://doi.org/10.1016/j.jmrt.2020.07.057

    Article  Google Scholar 

  54. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmed, H.O. Tekin, S. Rahman, Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.109

  55. J.A. Duffy, B. Harris, Linear and nonlinear optical properties of simple oxide II. Ironmaking Steelmaking 22, 132 (1995). https://doi.org/10.1063/1.360963

    Article  Google Scholar 

  56. J.A. Duffy, M.D. Ingram, ed. by D. Uhlman, N. Kreidl, Optical properties of glass, American Ceramic Society, Westerville. (1991)

  57. J. Duffy, Z. Xu, The vanadyl ion as a spectroscopic probe: measurement of optical basicity in the visible / near-infrared region. J. Non-Cryst. Solids 110(2–3), 223–228 (1989). https://doi.org/10.1016/0022-3093(89)90262-7

    Article  ADS  Google Scholar 

  58. J.A. Duffy, M.D. Ingram, Comments on the application of optical basicity to glass. J. Non-Cryst. Solids 144, 76–80 (1992). https://doi.org/10.1016/s0022-3093(05)80385-0

    Article  ADS  Google Scholar 

  59. J.A. Duffy, The electronic polarisability of oxygen in glass and the effect of composition. J. Non-Cryst. Solids 297(2–3), 275–284 (2002). https://doi.org/10.1016/s0022-3093(01)00940-1

    Article  ADS  Google Scholar 

  60. Geochim. Cosmochim. Acta 57, 3961–3970. https://doi.org/10.1016/0016-7037(93)90346-x

  61. G.D. Chryssikos, J.A. Duffy, J.M. Hutchinson, M.D. Ingram, E.I. Kamitsos, A.J. Pappin, Lithium borate glasses: a quantitative study of strength and fragility. J. Non-Cryst. Solids 172–174, 378–383 (1994). https://doi.org/10.1016/0022-3093(94)90460-x

    Article  ADS  Google Scholar 

  62. E.I. Kamitsos, G.D. Chryssikos, A.P. Patsis, J.A. Duffy, Metal ion sites in oxide glasses relation to glass basicity and ion transport. J. Non-Cryst. Solids 196, 249–254 (1996). https://doi.org/10.1016/0022-3093(95)00595-1

    Article  ADS  Google Scholar 

  63. M. Didomenico, S.H. Wemple, J. Appl. Phys. 40, 720 (1969). https://doi.org/10.1063/1.1657458

    Article  ADS  Google Scholar 

  64. S.H. Wemple, M. Didomenico Jr., Optical dispersion and the structure of solids. Phys. Rev. Lett. 24, 193 (1970). https://doi.org/10.1103/PhysRevLett.23.1156

    Article  ADS  Google Scholar 

  65. S.H. Wemple, M. Didomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  ADS  Google Scholar 

  66. M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, M.A. Afifi, Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Appl. Surf. Sci. 252(23), 8163–8170 (2006). https://doi.org/10.1016/j.apsusc.2005.10.040

    Article  ADS  Google Scholar 

  67. M.M. Abdel-Aziz, M.E.G. El-, M. Fadel, H.H. Labib, M.A. Afifi, Optical properties of amorphous Ge-Se-Tl system films. Thin Solid Films 386, 99–104 (2001)

    Article  ADS  Google Scholar 

  68. S.S. Chiad, N.F. Habubi, W.H. Abass, M.H. Abdul Allah, Effect of thickness on the optical and dispersion parameters of Cd0.4Se0.6 thin films. J. Opt. Electron. Adv. Mater. 18(9–10), 822 – 826 (2016). https://www.researchgate.net/publication/309412081

  69. A.K. Varshneya, Fundamentals of inorganic glasses. Academic Prese Limited, (1994), p.33

Download references

Acknowledgements

We would like to thank Taif University Research Supporting Project number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alomairy, S., Aboraia, A.M., Shaaban, E.R. et al. Comparative Studies on Spectroscopic and Crystallization Properties of Al2O3 -Li2O- B2O3-TiO2 Glasses. Braz J Phys 51, 1237–1248 (2021). https://doi.org/10.1007/s13538-021-00928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00928-1

Keywords

Navigation