Skip to main content
Log in

Phthalocyanine-Induced Optical Nonlinearity in Ceria: a Z-Scan Study

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The work reported in the paper suggests a mechanism of inducing optical nonlinearity in cerium dioxide (CeO2) and turning it into an optical limiter through cobalt phthalocyanine (CoPc) incorporation. CeO2 prepared by the chemical precipitation method is mixed with CoPc through the solid-state mixing technique to form the nanocomposite, which is subjected to X-ray diffraction, field emission scanning electron microscopic, and UV–visible spectroscopic characterizations. While the effect of annealing and CoPc incorporation on the optical absorption is studied by UV–visible absorption spectroscopy, the Z-scan technique is used for studying the nonlinear refractive index, nonlinear absorption, and optical limiting properties of the samples. The CoPc incorporation to CeO2 annealed at different temperatures is found to enhance (i) the absorption pattern drastically by extending the UV absorption to the near-infrared region, (ii) the nonlinear refractive index, and (iii) the optical limiting capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.V. Rao, P.T. Anusha, T.S. Prashant, D. Swain, S.P. Tewari, Mater. Sci. Appl. 2, 299 (2011)

    Google Scholar 

  2. M.J. Muñoz-Batista, M.N. Gómez-Cerezo, A. Kubacka, D. Tudela, M. Fernández-García, ACS Catal. 4, 63 (2013)

    Article  Google Scholar 

  3. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, D. Zhu, Chem. Phys. Lett. 356, 403 (2002)

    Article  ADS  Google Scholar 

  4. B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chem. Rev. 120, 9304 (2020)

    Article  Google Scholar 

  5. S.H. Din, Charact. Appl. Nanomater. 2, (2019)

  6. T.A. Dontsova, S.V Nahirniak, and I.M. Astrelin, J. Nanomater. 2019, (2019)

  7. A.A. Ansari, M.A.M. Khan, M.N. Khan, S.A. Alrokayan, M. Alhoshan, and M.S. Alsalhi, J. Semicond. 32, (2011)

  8. C. Sanchez, B. Julián, P. Belleville, and M. Popall, J. Mater. Chem. 15, 3559 (2005)

  9. E. Shahriari, W. Yunus, E. Saion, Brazilian. J. Phys. 40, 256 (2010)

    Google Scholar 

  10. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, B. Krishnan, A. Deepthy, J. Appl. Phys. 103, 33105 (2008)

    Article  Google Scholar 

  11. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116, 5987 (2016)

    Article  Google Scholar 

  12. J.R. Brandon, R. Taylor, Surf. Coatings Technol. 39, 143 (1989)

    Article  Google Scholar 

  13. P. Trogadas, J. Parrondo, V. Ramani, Electrochem. Solid State Lett. 11, B113 (2008)

    Article  Google Scholar 

  14. H. Jia, A. Du, H. Zhang, J. Yang, R. Jiang, J. Wang, C. Zhang, J. Am. Chem. Soc. 141, 5083 (2019)

    Article  Google Scholar 

  15. K.M. Rahulan, N.A.L. Flower, R.A. Sujatha, P.M. Priya, C. Gopalakrishnan, Opt. Laser Technol. 101, 358 (2018)

    Article  ADS  Google Scholar 

  16. K. Walzer, M. Hietschold, Surf. Sci. 471, 1 (2001)

    Article  ADS  Google Scholar 

  17. P. Kumar, A. Kumar, B. Sreedhar, B. Sain, S.S. Ray, S.L. Jain, Chem. Eur. J. 20, 6154 (2014)

    Article  Google Scholar 

  18. R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, J. Mol. Struct. 753, 119 (2005)

    Article  ADS  Google Scholar 

  19. M.J. Cook, Chem. Rec. 2, 225 (2002)

    Article  Google Scholar 

  20. A.M. Sevim, S. Çakar, M. Özacar, A. Gül, Sol. Energy 160, 18 (2018)

    Article  ADS  Google Scholar 

  21. N.V. Kamanina, I.Y. Denisyuk, Opt. Spectrosc. 96, 77 (2004)

    Article  ADS  Google Scholar 

  22. D. Dini, M. Barthel, M. Hanack, European. J. Org. Chem. 2001, 3759 (2001)

    Google Scholar 

  23. Y. Zu, C. He, D. Liu, L. Chen, Dye. Pigment. 173, 107841 (2020)

    Article  Google Scholar 

  24. M. Yamashita, F. Inui, K. Irokawa, A. Morinaga, T. Tako, A. Mito, H. Moriwaki, Appl. Surf. Sci. 130, 883 (1998)

    Article  ADS  Google Scholar 

  25. J.S. Shirk, R.G.S. Pong, S.R. Flom, H. Heckmann, M. Hanack, J. Phys. Chem. A 104, 1438 (2000)

    Article  Google Scholar 

  26. Y. Zhang, Y. Wang, RSC Adv. 7, 45129 (2017)

    Article  ADS  Google Scholar 

  27. T. Kuriakose, E. Baudet, T. Halenkovič, M.M.R. Elsawy, P. Němec, V. Nazabal, G. Renversez, M. Chauvet, Opt. Commun. 403, 352 (2017)

    Article  ADS  Google Scholar 

  28. I. Kang, T. Krauss, F. Wise, Opt. Lett. 22, 1077 (1997)

    Article  ADS  Google Scholar 

  29. G. Sreekumar, P.G.L. Frobel, C.I. Muneera, K. Sathiyamoorthy, C. Vijayan, C. Mukherjee, J. Opt. A Pure Appl. Opt. 11, 125204 (2009)

    Article  ADS  Google Scholar 

  30. M. Yin, H.P. Li, S.H. Tang, W. Ji, Appl. Phys. B 70, 587 (2000)

    Article  ADS  Google Scholar 

  31. M. Falconieri, J. Opt. A Pure Appl. Opt. 1, 662 (1999)

    Article  ADS  Google Scholar 

  32. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  33. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  34. R. Sebastian, M.S. Swapna, V. Raj, M. Hari, S. Sankararaman, Mater. Res. Express 5, 75001 (2018)

    Article  Google Scholar 

  35. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  Google Scholar 

  36. P.K. Prajapati, A. Kumar, S.L. Jain, A.C.S. Sustain, Chem. Eng. 6, 7799 (2018)

    Google Scholar 

  37. P.K. Prajapati, S.L. Jain, Dalt. Trans. 48, 4941 (2019)

    Article  Google Scholar 

  38. R. Sebastian, S. Sankararaman, JOSA B 37, 110 (2020)

    Article  ADS  Google Scholar 

  39. R. Sebastian, M.S. Swapna, H.V. saritha Devi, V. Raj, M. Hari, and S. Sankararaman, Mater. Res. Express 6, 116202 (2019)

  40. F.Z. Henari and S. Cassidy, in AIP Conf. Proc. (AIP Publishing, 2015), p. 20044

  41. E. Shahriari, W.M.M. Yunus, Dig. J. Nanomater. Biostruct 5, 939 (2010)

    Google Scholar 

  42. E. Shahriari, W.M.M. Yunus, K. Naghavi, Z.A. Talib, Opt. Commun. 283, 1929 (2010)

    Article  ADS  Google Scholar 

  43. W. Husinsky, A. Ajami, P. Nekvindova, B. Svecova, J. Pesicka, M. Janecek, Opt. Commun. 285, 2729 (2012)

    Article  ADS  Google Scholar 

  44. M. Yüksek, T. Ceyhan, F. Bağcı, H.G. Yağlıoğlu, A. Elmali, Ö. Bekaroğlu, Opt. Commun. 281, 3897 (2008)

    Article  ADS  Google Scholar 

  45. M.C. Frare, R. Signorini, V. Weber, and R. Bozio, in Opt. Photonics Counterterrorism, Crime Fight. Def. IX; Opt. Mater. Biomater. Secur. Def. Syst. Technol. X (International Society for Optics and Photonics, 2013), p. 890113

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed.

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, R., Sankararaman, S. Phthalocyanine-Induced Optical Nonlinearity in Ceria: a Z-Scan Study. Braz J Phys 51, 1191–1198 (2021). https://doi.org/10.1007/s13538-021-00918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00918-3

Keywords

Navigation