Skip to main content
Log in

Enhanced third-order optical nonlinearity in Ce3+ ion-doped zinc sulfide–polyvinyl alcohol freestanding nanocomposite films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Undoped, 0, 2, and 5 mol% Ce-doped ZnS–PVA nanocomposite films have been prepared using in situ chemical method. X-ray diffraction patterns confirm that the prepared nanocomposite films are in cubic structure of ZnS. UV–Vis optical absorption spectra of Ce3+-doped ZnS–PVA films exhibit the red-shifted phenomenon with the increasing Ce dopant concentration in ZnS. Scanning electron microscope images reveal the morphology changes in the films with Ce doping. The high values of real and imaginary parts of dielectric constant at low frequencies are attributed to the space charge polarization, whereas the loss tangent of Ce-doped ZnS–PVA nanocomposite films at low frequency with the increasing Ce dopant concentration indicates the enhancement of optical quality of the films. The Z-scan technique exhibits a reverse saturable absorption process in nonlinear absorption studies and self-focusing optical nonlinearity in nonlinear refractive studies under the experimental conditions. The highest nonlinear optical parameters such as nonlinear absorption coefficient, nonlinear refractive index, and third-order nonlinear optical susceptibility are found to be about 9336.6 cm/GW, 1.782 × 10−4 cm2/GW, and 2.103 × 10−5 esu, respectively, for 5 mol% Ce3+-doped films. The estimated third-order nonlinear optical susceptibility is eight orders of magnitude larger than that of bulk ZnS, and four–five orders of magnitude higher than those of the some representative materials reported. Hence, the Ce3+-doped ZnS–PVA nanocomposite films investigated here emerge as promising candidates for the development of nonlinear optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polavarapu L, Venkatram N, Ji W, Hu Q (2009) Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses. ACS Appl Mater Interfaces 10:2298–2303

    Article  Google Scholar 

  2. Venkatram N, Rao DN, Akundi MA (2005) Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. Opt Express 13:867–872

    Article  Google Scholar 

  3. Chen A, Yang G, Long H, Li F, Li Y, Lu P (2009) Nonlinear optical properties of laser deposited CuO thin films. Thin Solid Films 517:4277–4280

    Article  Google Scholar 

  4. Yuwono AH, Xue J, Wang J, Elim HI, Ji W, Lic Y, White TJ (2003) Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem 13:1475–1479

    Article  Google Scholar 

  5. Xiu WC, Shu FS, Zong GY (2009) Large third-order optical nonlinearity of cadmium sulphide nanoparticles embedded in polymer thin films. Chin Phys Lett 26:097804–097807

    Article  Google Scholar 

  6. Sreeja R, John J, Aneesh PM, Jayaraj MK (2010) Linear and nonlinear optical properties of luminescent ZnO nanoparticles embedded in PMMA matrix. Opt Commun 283:2908–2913

    Article  Google Scholar 

  7. Wang J, Blau WJ (2009) Inorganic and hybrid nanostructures for optical limiting. J Opt A 11:024001–024016

    Article  Google Scholar 

  8. Seshan K (2001) Deposition technologies and applications. In: Handbook of thin film deposition process and technologies. Noyes, New York

  9. Porel S, Venkatram N, Narayana Rao D, Radhakrishnan TP (2007) Optical power limiting in the femtosecond regime by silver nanoparticles-embedded polymer film. J Appl Phys 102:033107–033112

    Article  Google Scholar 

  10. Krishnakumar V, Shanmugam G, Nagalakshmi R (2012) Large third-order optical nonlinearity of Mg doped PbS/PVA freestanding nanocomposite films. J Phys D 45:165102–165108

    Article  Google Scholar 

  11. Jing C, Xu X, Zhang X, Liu Z, Chu J (2009) In situ synthesis and third-order nonlinear optical properties of CdS/PVP nanocomposite films. J Phys D 42:075402–075407

    Article  Google Scholar 

  12. Kurian PA, Vijayan C, Sathiyamoorthy K, Sandeep CS, Philip R (2007) Excitonic transitions and off-resonant optical limiting in Cds quantum dots stabilized in a synthetic glue matrix. Nanoscale Res Lett 2:561–568

    Article  Google Scholar 

  13. Geng BY, Zhang LD, Wang GZ, Xie T, Zhang YG, Meng GW (2004) Synthesis and photoluminescence properties of ZnMnS nanobelts. Appl Phys Lett 84:2157–2159

    Article  Google Scholar 

  14. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2001) Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+. Nano Lett 1:429–433

    Article  Google Scholar 

  15. Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M, Kulkarni SK (1995) Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett 67:2702–2704

    Article  Google Scholar 

  16. Yang P, Lu M, Xu D, Yuan D, Song C, Liu S, Cheng X (2003) Luminescence characteristics of ZnS nanoparticles co-doped with Ni2+ and Mn2+. Opt Mater 24:497–502

    Article  Google Scholar 

  17. Sarkar R, Tiwary CS, Kumbhakar P, Mitra AK (2009) Enhanced visible light emission from Co2+ doped ZnS nanoparticles. Physica B Condens Matter 404:3855–3858

    Article  Google Scholar 

  18. Borse PH, Vogel W, Kulkarni SK (2006) Effect of pH on photoluminescence enhancement in Pb-doped ZnS nanoparticles. J Colloid Interface Sci 293:437–442

    Article  Google Scholar 

  19. Chen W, Malm JO, Zwiller V, Huang Y, Liu S, Wallenberg R, Bovin JO, Samuelson L (2000) Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles. Phys Rev B 61:11021–11024

    Article  Google Scholar 

  20. Chen Y, Huang GF, Huang WQ, Zou BS, Pan A (2012) Enhanced visible-light photoactivity of La-doped ZnS thin films. Appl Phys A 108:895–900

    Article  Google Scholar 

  21. Shanmugam N, Cholan S, Viruthagiri G, Gobi R, Kannadasan N (2014) Synthesis and characterization of Ce3+-doped flowerlike ZnS nanorods. Appl Nanosci 4:359–365

    Article  Google Scholar 

  22. He J, Ji W, Mi J, Zheng Y, Ying JY (2006) Three-photon absorption in water-soluble ZnS nanocrystals. Appl Phys Lett 88:181114–181116

    Article  Google Scholar 

  23. Nikesh VV, Dharmadhikari A, Ono H, Nozaki S, Ravindra Kumar G, Mahamuni S (2004) Optical nonlinearity of monodispersed, capped ZnS quantum particles. Appl Phys Lett 84:4602–4604

    Article  Google Scholar 

  24. Chattopadhyay M, Kumbhakar P, Sarkar R, Mitra AK (2009) Enhanced three-photon absorption and nonlinear refraction in ZnS and Mn2+ doped ZnS quantum dots. Appl Phys Lett 95:163115–163117

    Article  Google Scholar 

  25. Kole AK, Kumbhakar P, Chatterjee U (2012) Observation of nonlinear absorption and visible photoluminescence emission in chemically synthesized Cu2+ doped ZnS nanoparticles. Appl Phys Lett 100:013103–0131015

    Article  Google Scholar 

  26. Malashkevich GE, Melichenko IM, Poddenezhny EN, Boiko AA (1999) New optical centers of triply charged cerium ions in silica gel-glasses saturated with hydrogen. J Non-Cryst Solids 260:141–146

    Article  Google Scholar 

  27. Mazurak Z, Ratuszna A, Daniel Ph (1999) Luminescence properties of Pr3+ and Ce3+ in KCaF3 single crystals. J Lumin 82:163–171

    Article  Google Scholar 

  28. Furman JD, Gundiah G, Page K, Pizarro N, Cheetham AK (2008) Local structure and time-resolved photoluminescence of emulsion prepared YAG nanoparticles. Chem Phys Lett 465:67–72

    Article  Google Scholar 

  29. Krishnakumar V, Shanmugam G (2012) Structural, Optical and dielectric properties of PbS-PVA-PEG nanocomposite film. Sci Adv Mater 4:1247–1253

    Article  Google Scholar 

  30. Lee S, Song D, Kim D, Lee J, Kim S, Park IY, Choi YD (2004) Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS: Cu nanocrystals. Mater Lett 58:342–346

    Article  Google Scholar 

  31. Brus LE (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  32. Cizeron J, Pileni MP (1997) Solid solution of CdyZn1-yS Nanosized particles: photophysical properties. J Phys Chem B 101:8887–8891

    Article  Google Scholar 

  33. Qu SC, Zhou WH, Liu FQ, Chen NF, Wang ZG, Pan HY, Yu DP (2002) Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution. Appl Phys Lett 80:3605–3607

    Article  Google Scholar 

  34. Xu SJ, Chua SJ, Liu B, Gan LM, Chew CH, Xu GQ (1998) Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment. Appl Phys Lett 73:478–480

    Article  Google Scholar 

  35. Oda S, Kukimoto H (1979) A new emission band in self-activated ZnS. J Lumin 18:829–832

    Article  Google Scholar 

  36. Becker WG, Bard A (1983) Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J Phys Chem 87:4888–4893

    Article  Google Scholar 

  37. Xue D, Kitamura K (2002) Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun 122:537–541

    Article  Google Scholar 

  38. Meera J, Sumithra V, Seethu R, Prajeshkumar JM (2010) Dielectric properties of nanocrystalline ZnS. Acad Rev 1:93–100

    Google Scholar 

  39. Smyth CP (1956) Dielectric behavior and structure. Acta Cryst 9:838–839

    Article  Google Scholar 

  40. Mohan GR, Ravinder D, Reddy AVR, Boyanov BS (1999) Dielectric properties of polycrystalline mixed nickel-zinc ferrites. Mater Lett 40:39–45

    Article  Google Scholar 

  41. Tataoglu A, Altmdal S, Bulbul MM (2005) Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectron Eng 81:140–149

    Article  Google Scholar 

  42. Falconieri M (1999) Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. J Opt A 1:662–667

    Article  Google Scholar 

  43. de Nalda R, del Coso R, Requejo-Isidro J, Olivares J, Suarez-Garcia A, Solis J, Afonso CN (2002) Limits to the determination of the nonlinear refractive index by the Z-scan method. J Opt Soc Am B 19:289–296

    Article  Google Scholar 

  44. Wang C, Guan L, Mao Y, Gu Y, Liu J, Fu S, Xu Q (2009) Optical nonlinearity of ZnS–polyvinyl pyrrolidone nanocomposite suspension. J Phys D Appl Phys 42:045403

    Article  Google Scholar 

  45. Wong TC, Wong KS (2010) Degenerate two-beam phase conjugation in one dimensional ZnS-YF photonic crystal with central defect mode. IEEE Photon Technol Lett 22:781–783

    Article  Google Scholar 

  46. Irimpan L, Nampoori VPN, Radhakrishnan P, Bindhu K, Deepthy A (2008) Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO. J Appl Phys 103:033105–033111

    Article  Google Scholar 

  47. Kumari V, Kumar V, Malik BP, Mehra RM, Mohan D (2012) Nonlinear optical properties of erbium doped zinc oxide (EZO) thin films. Opt Commun 285:2182–2188

    Article  Google Scholar 

Download references

Acknowledgements

The authors (G. Shanmugam and V. Krishnakumar) are grateful to the University Grants Commission (UGC), New Delhi, India, for the financial support of this work under the Major Research Project [Grant No F.39-494/2010 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, G., Sasikala, V., Krishnakumar, V. et al. Enhanced third-order optical nonlinearity in Ce3+ ion-doped zinc sulfide–polyvinyl alcohol freestanding nanocomposite films. J Mater Sci 51, 3241–3249 (2016). https://doi.org/10.1007/s10853-015-9635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9635-3

Keywords

Navigation