Skip to main content
Log in

First-Order Gauge-Invariant Generalization of the Quantum Rigid Rotor

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A first-order gauge-invariant formulation for the two-dimensional quantum rigid rotor is long known in the theoretical physics community as an isolated peculiar model. Parallel to that fact, the longstanding constraints abelianization problem, aiming at the conversion from second- to first-class systems for quantization purposes, has been approached a number of times in the literature with a handful of different forms and techniques and still continues to be a source of lively and interesting discussions. Connecting these two points, we develop a new systematic method for converting second-class systems to first-class ones, valid for a family of systems encompassing the quantum rigid rotor as a special case. In particular, the gauge invariance of the quantum rigid rotor is fully clarified and generalized in the context of arbitrary translations along the radial momentum direction. Our method differs substantially from previous ones as it does not rely neither on the introduction of new auxiliary variables nor on the a priori interpretation of the second-class constraints as coming from a gauge-fixing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For simplicity, we are considering mechanical systems. The description of fields can in principle be achieved by allowing the discrete indexes to take continuous values through a limiting process.

  2. We are assuming that the given function T(qk) satisfies

    $$ \frac{\partial T(q_{k})}{\partial q_{i}}\neq 0 $$

    for each \(i=1,\dots ,n\).

  3. We assume the order of the partial derivatives always commute, i.e., Tij = Tji.

  4. That prescription was actually originally discussed by Dirac in [3].

  5. This choice explicitly shows that the present generalization is not restricted to the form (60).

References

  1. P. A. M. Dirac, Can. J. Math. 2, 129 (1950)

    Article  Google Scholar 

  2. J. L. Anderson, P. G. Bergmann, Phys. Rev. 83, 1018 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. A. M. Dirac. Lectures on quantum mechanics (Yeshiva University, New York, 1964)

    Google Scholar 

  4. A. J. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian systems, RX-748, PRINT-75-0141 (IAS PRINCETON, 1976)

  5. K. Sundermeyer, Constrained dynamics with applications to Yang-Mills theory, general relativity, classical spin, dual string model. Lect. Notes Phys. 169, 1 (1982)

    Article  MathSciNet  Google Scholar 

  6. D. M. Gitman, I. V. Tyutin. Quantization of fields with constraints, Springer series in nuclear and particle physics Berlin (Springer, Germany, 1990)

    Book  Google Scholar 

  7. M. Henneaux, C. Teitelboim. Quantization of gauge systems (Univ Pr, Princeton, 1992)

    MATH  Google Scholar 

  8. H. J. Rothe, K. D. Rothe, Vol. 81. Classical and quantum dynamics of constrained Hamiltonian systems, World Scientific Lecture Notes in Physics (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  9. E. C. G. Stueckelberg, Helv. Phys. Acta. 30, 209 (1957)

    MathSciNet  Google Scholar 

  10. J. Wess, B. Zumino, Phys. Lett. 37B, 95 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  11. I. A. Batalin, E. S. Fradkin, Phys. Lett. B. 180, 157 (1986). Erratum: [Phys. Lett. B 236, 528 (1990)]

    Article  ADS  Google Scholar 

  12. I. A. Batalin, E. S. Fradkin, Nucl. Phys. B. 279, 514 (1987)

    Article  ADS  Google Scholar 

  13. I. A. Batalin, E. S. Fradkin, T. E. Fradkina, Nucl. Physy. B. 314, 158 (1989). Erratum: [Nucl. Phys. B 323, 734 (1989)]

    Article  ADS  Google Scholar 

  14. T. Fujiwara, Y. Igarashi, J. Kubo, Nucly Phys. B. 341, 695 (1990)

    Article  ADS  Google Scholar 

  15. I. A. Batalin, I. V. Tyutin, Int. J. Mod. Phys. A. 6, 3255 (1991)

    Article  ADS  Google Scholar 

  16. R. Banerjee, Phys. Rev. D. 48, R5467 (1993)

    Article  ADS  Google Scholar 

  17. R. Amorim, J. Barcelos-Neto, Phys. Rev. D. 53, 7129 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. C. P. Natividade, H. Boschi-Filho, L. V. Belvedere, Mod. Phys. Lett. A 19 (2004)

  19. E. M. C. Abreu, C. F. L. Godinho, Mod. Phys. Lett. A. 32(38), 1750215 (2017)

    Article  ADS  Google Scholar 

  20. K. Harada, H. Mukaida, Z. Phys. C. 48, 151 (1990)

    Article  MathSciNet  Google Scholar 

  21. P. Mitra, R. Rajaraman, Annals Phys. 203, 137 (1990)

    Article  ADS  Google Scholar 

  22. P. Mitra, R. Rajaraman, Annals Phys. 203, 157 (1990)

    Article  ADS  Google Scholar 

  23. R. Anishetty, A. S. Vytheeswaran, J. Phys. A. 26, 5613 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. S. Vytheeswaran, Annals Phys. 236, 297 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. A. Neto, Braz. J. Phys. 37, 1106 (2007)

    Article  ADS  Google Scholar 

  26. J.A. Neto, arXiv: [hep-th] (2009)

  27. R. Amorim, L.E.S. Souza, R. Thibes, Z.Phys.C. 65, 355 (1995)

    Article  ADS  Google Scholar 

  28. R. Amorim, R. Thibes, J.Math.Phys. 40, 5306 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Hojman, L.F. Urrutia, J.Math.Phys. 22, 1896 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. J.F. Carinena, C. Lopez, M.F. Ranada, J.Math.Phys. 29, 1134 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. L.D. Faddeev, R. Jackiw, Phys.Rev.Lett. 60, 1692 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Barcelos-Neto, C. Wotzasek, Int.J.Mod.Phys.A. 7, 4981 (1992)

    Article  ADS  Google Scholar 

  33. D. Nemeschansky, C.R. Preitschopf, M. Weinstein, AnnalsPhys. 183, 226 (1988)

    ADS  Google Scholar 

  34. G.D. Barbosa, R. Thibes, Braz.J.Phys. 48(4), 380 (2018)

    Article  ADS  Google Scholar 

  35. G.D. Barbosa, R. Thibes, Mod.Phys.Lett.A. 33(10n11), 1850055 (2018)

    Article  ADS  Google Scholar 

  36. S. Gupta, R.P. Malik, Eur.Phys.J.C. 68, 325 (2010)

    Article  ADS  Google Scholar 

  37. D. Shukla, T. Bhanja, R.P. Malik, Int.J.Mod.Phys.A. 30(20), 1550115 (2015)

    Article  ADS  Google Scholar 

  38. D. Shukla, T. Bhanja, R.P. Malik, Adv.HighEnergyPhys. 2016, 2618150 (2016). Erratum:[Adv.HighEnergyPhys.2018,5217871(2018)]

    Google Scholar 

  39. A. Scardicchio, Phys.Lett.A. 300, 7 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Thibes.

Additional information

Publisher’sNote

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes de Oliveira, S., Santos, C.M.B. & Thibes, R. First-Order Gauge-Invariant Generalization of the Quantum Rigid Rotor. Braz J Phys 50, 480–488 (2020). https://doi.org/10.1007/s13538-020-00749-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00749-8

Keywords

Navigation