Skip to main content
Log in

A Gauge Invariant Description for the General Conic Constrained Particle from the FJBW Iteration Algorithm

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We consider a second-degree algebraic curve describing a general conic constraint imposed on the motion of a massive spinless particle. The problem is trivial at classical level but becomes involved and interesting concerning its quantum counterpart with subtleties in its symplectic structure and symmetries. We start with a second-class version of the general conic constrained particle, which encompasses previous versions of circular and elliptical paths discussed in the literature. By applying the symplectic FJBW iteration program, we proceed on to show how a gauge invariant version for the model can be achieved from the originally second-class system. We pursue the complete constraint analysis in phase space and perform the Faddeev-Jackiw symplectic quantization following the Barcelos-Wotzasek iteration program to unravel the essential aspects of the constraint structure. While in the standard Dirac-Bergmann approach there are four second-class constraints, in the FJBW they reduce to two. By using the symplectic potential obtained in the last step of the FJBW iteration process, we construct a gauge invariant model exhibiting explicitly its BRST symmetry. We obtain the quantum BRST charge and write the Green functions generator for the gauge invariant version. Our results reproduce and neatly generalize the known BRST symmetry of the rigid rotor, clearly showing that this last one constitutes a particular case of a broader class of theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We stress however that all three variables (x, y, z) are treated in the present formalism at exactly the same level.

  2. Here they can be understood as coming from ϕ3 derivatives with respect to x and y.

  3. The use of first-order Lagrangians in other second class constraints conversion contexts is also common, see for instance references [16, 17].

References

  1. D. Nemeschansky, C.R. Preitschopf, M. Weinstein, Annals Phys. 183, 226 (1988)

    Article  ADS  Google Scholar 

  2. C. Wotzasek, J. Phys. A. 23, L885 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Loeffelholz, G. Morchio, F. Strocchi, Annals Phys. 250, 367 (1996)

    Article  ADS  Google Scholar 

  4. S. Gupta, R.P. Malik, Eur. Phys. J. C. 68, 325 (2010)

    Article  ADS  Google Scholar 

  5. D. Shukla, T. Bhanja, R.P. Malik, Adv. High Energy Phys. 2016, 2618150 (2016). Erratum: [Adv. High Energy Phys. 2018, 5217871 (2018)]

    Article  Google Scholar 

  6. H. Yabuki, Annals Phys. 209, 231 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. K. Shimizu, Mod. Phys. Lett. A. 20, 699 (2005)

    Article  ADS  Google Scholar 

  8. A.K.H. Bengtsson, Fortsch. Phys. 57, 499 (2009)

    Article  ADS  Google Scholar 

  9. A. Shukla, Adv. High Energy Phys. 2017, 1403937 (2017)

    Article  Google Scholar 

  10. S. Krishna, Int. J. Mod. Phys. A. 32(11), 1750055 (2017)

    Article  ADS  Google Scholar 

  11. J. Wess, B. Zumino, Phys. Lett. 37B, 95 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Gomis, K. Rafanelli, Phys. Rev. D. 35, 591 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. I.A. Batalin, E.S. Fradkin, Nucl. Phys. B. 279, 514 (1987)

    Article  ADS  Google Scholar 

  14. P. Mitra, R. Rajaraman, Annals Phys. 203, 157 (1990)

    Article  ADS  Google Scholar 

  15. I.A. Batalin, I.V. Tyutin, Int. J. Mod. Phys. A. 6, 3255 (1991)

    Article  ADS  Google Scholar 

  16. R. Amorim, L.E.S. Souza, R. Thibes, Z. Phys. C. 65, 355 (1995)

    Article  ADS  Google Scholar 

  17. R. Amorim, R. Thibes, J. Math. Phys. 40, 5306 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. S.C. Sararu, M.T. Udristioiu, Mod. Phys. Lett. A. 31(35), 1650205 (2016)

    Article  ADS  Google Scholar 

  19. E.M.C. De Abreu, J. Ananias Neto, A.C.R. Mendes, G. Oliveira-Neto, Int. J. Mod. Phys. A. 31(01), 1550225 (2016)

    Article  ADS  Google Scholar 

  20. P.A.M. Dirac, Can. J. Math. 2, 129 (1950)

    Article  Google Scholar 

  21. P.A.M. Dirac. Lectures on Quantum Mechanics (Yeshiva University, New York, 1964)

    MATH  Google Scholar 

  22. J.L. Anderson, P.G. Bergmann, Phys. Rev. 83, 1018 (1951)

    Article  ADS  Google Scholar 

  23. P.G. Bergmann, I. Goldberg, Phys. Rev. 98, 531 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Scardicchio, Phys. Lett. A. 300, 7 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. K.I. Nawafleh, R.S. Hijjawi, J. Assoc. Arab Univ. Basic Appl. Sci. 14, 28 (2013)

    Google Scholar 

  26. M.K. Fung, Chin. J. Phys. 52, 6 (2014)

    Google Scholar 

  27. G.D. Barbosa, R. Thibes, Mod. Phys. Lett. A. 33(10–11), 1850055 (2018)

    Article  ADS  Google Scholar 

  28. C. Becchi, A. Rouet, R. Stora, Phys. Lett. 52B, 344 (1974)

    Article  ADS  Google Scholar 

  29. C. Becchi, A. Rouet, R. Stora, Commun. Math. Phys. 42, 127 (1975)

    Article  ADS  Google Scholar 

  30. I.V. Tyutin, Preprint of P.N. Lebedev Physical Institute, No. 39, (1975) arXiv:0812.0580 [hep-th]

  31. L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Barcelos-Neto, C. Wotzasek, Int. J. Mod. Phys. A. 7, 4981 (1992)

    Article  ADS  Google Scholar 

  33. C. Wotzasek, Phys. Rev. D. 46, 2734 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Wotzasek, Annals Phys. 243, 76 (1995)

    Article  ADS  Google Scholar 

  35. H. Blas, B.M. Pimentel, Annals Phys. 282, 67 (2000)

    Article  ADS  Google Scholar 

  36. R. Bufalo, B.M. Pimentel, Eur. Phys. J. C. 74(8), 2993 (2014)

    Article  ADS  Google Scholar 

  37. A.C.R. Mendes, E.M.C. Abreu, J.A. Neto, F.I. Takakura, EPL. 116(2), 20004 (2016)

    Article  ADS  Google Scholar 

  38. A. Escalante, P. Cavildo-Sánchez, Annals Phys. 374, 375 (2016)

    Article  ADS  Google Scholar 

  39. E.M.C. Abreu, R.L. Fernandes, A.C.R. Mendes, J.A. Neto, arXiv:1705.03758 [physics.gen-ph] (2017)

  40. D.J. Toms, Phys. Rev. D. 92(10), 105026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. A.J. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems, RX-748, PRINT-75-0141 (IAS PRINCETON) Accademia Nazionale dei Lincei (1976)

  42. K. Sundermeyer, Constrained dynamics with applications to yang-mills theory, general relativity, classical spin, dual string model. Lect. Notes Phys. 169, 1 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. D.M. Gitman, I.V. Tyutin. Quantization of Fields with Constraints, Springer Series in Nuclear and Particle Physics Berlin (Springer, Germany, 1990)

    Book  Google Scholar 

  44. M. Henneaux, C. Teitelboim. Quantization of Gauge Systems (Univ Pr, Princeton, 1992)

    MATH  Google Scholar 

  45. H.J. Rothe, K.D. Rothe. Classical and Quantum Dynamics of Constrained Hamiltonian Systems (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  46. N. Nakanishi, Prog. Theor. Phys. 35, 1111 (1966)

    Article  ADS  Google Scholar 

  47. B. Lautrup, Kong. Dan. Vid. Sel. Mat. Fys. Med. 11, 35 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Thibes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, G.D., Thibes, R. A Gauge Invariant Description for the General Conic Constrained Particle from the FJBW Iteration Algorithm. Braz J Phys 48, 380–389 (2018). https://doi.org/10.1007/s13538-018-0582-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0582-8

Keywords

Navigation