Advertisement

Brazilian Journal of Physics

, Volume 48, Issue 3, pp 299–313 | Cite as

Elementary Concepts and Fundamental Laws of the Theory of Heat

  • Mário J. de Oliveira
Statistical
  • 158 Downloads

Abstract

The elementary concepts and fundamental laws concerning the science of heat are examined from the point of view of its development with special attention to its theoretical structure. The development is divided into four periods, each one characterized by the concept that was attributed to heat. The transition from one to the next period was marked by the emergence of new concepts and new laws, and by singular events. We point out that thermodynamics, as it emerged, is founded on the elementary concepts of temperature and adiabatic wall, and on the fundamental laws: Mayer-Joule principle, or law of conservation of energy; Carnot principle, which leads to the definition of entropy; and the Clausius principle, or law of increase in entropy.

Keywords

Thermodynamics Fundameantal laws of thermodynamics Fundamental concepts of thermodynamics 

References

  1. 1.
    L. Russo, The Forgotten Revolution (Springer, Berlin, 2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    N.R. Campbell, Physics: the Elements (Cambridge University Press, Cambridge, 1920)Google Scholar
  3. 3.
    C.G. Hempel, Fundamentals of Concept Formation in Empirical Science (University of Chicago Press, Chicago, 1952)Google Scholar
  4. 4.
    R. Carnap, The methodological character of theoretical concepts. Minnesota Studies in the Philosophy of Science, ed. by H. Feigl, M. Scriven, Vol. 1 (University of Minnesota Press, Minneapolis, 1956), pp. 38–76Google Scholar
  5. 5.
    C.G. Hempel, Philosophy of Natural Science (Prentice Hall, Englewood Cliffs, 1966)Google Scholar
  6. 6.
    H. Feigl, The ’orthodox’ view of theories: remarks in defense as well as critique. Minnesota Studies in the Philosophy of Science, ed. by M. Radner, S. Winokur, Vol. 4 (University of Minnesota Press, Minneapolis, 1970), pp. 3–16Google Scholar
  7. 7.
    C.G. Hempel, On the ’standard conception’ of scientific theories. Minnesota Studies in the Philosophy of Science, ed. by M. Radner, S. Winokur, Vol. 4 (University of Minnesota Press, Minneapolis, 1970), pp. 142–163Google Scholar
  8. 8.
    R. Carnap, An Introduction to the Philosophy of Science (Basic Books, New York, 1984)Google Scholar
  9. 9.
    F.S. Taylor, The origin of the thermometer. Ann. Sci. 5, 129–156 (1942)CrossRefGoogle Scholar
  10. 10.
    W.E.K. Middleton. A History of the Thermometer and Its Use in Meteorology (Johns Hopkins Press, Baltimore, 1966)Google Scholar
  11. 11.
    Letter of Benedetto Castelli to Ferdinando Cesarini, Dated 20 september 1638, in Le Opere di Galileo Galilei Edizione Nazionale. Firenze. 17, 377–380 (1906)Google Scholar
  12. 12.
    H Van Etten, [pseudonym of Jean Leurechon]. Récréation Mathématique, Pont-a-Mousson (1626)Google Scholar
  13. 13.
    L. Tisza, Generalized Thermodynamics (MIT Press, Cambridge, 1966)zbMATHGoogle Scholar
  14. 14.
    Scala graduum caloris, Calorum Descriptiones & signa. Philos. Trans. 824–829 (1701). Anonimous publication by I. NewtonGoogle Scholar
  15. 15.
    D.G. Fahrenheit, Experimenta et observationes de congelatione aquae in vacuo factae. Phil. Trans. 33, 78–84 (1724)CrossRefGoogle Scholar
  16. 16.
    E. Mach, Principles of the Theory of Heat (Reidel, Dordrecht, 1986). Translated from the second German edition of 1900CrossRefGoogle Scholar
  17. 17.
    D. Mckie, N.H.V. de Heathcote. The Discovery of Specific and Latent Heats (Arnold, London, 1935)Google Scholar
  18. 18.
    H. Boerhaave, A New Method of Chemistry (Longman, London, 1753). Translated from the original latin of 1732Google Scholar
  19. 19.
    An enquiry into the General Effects of Heat, with Observations on the Theories of Mixtures. Nourse, London, 1770. Anonimous publicationGoogle Scholar
  20. 20.
    J. Black, Lectures on the Elements of Chemistry, ed. J. Robinson (Edinburgh, 1803)Google Scholar
  21. 21.
    P Shaw, The Philosophical Works of the Honorable Robert Boyle (Innys, London, 1725), p. 125 and 378Google Scholar
  22. 22.
    A.L. Lavoisier et P.S. Laplace, Mémoire sur la chaleur. Mé,moire de l’Académie Royal des Sciences, (année, 1780), pp. 355–408Google Scholar
  23. 23.
    G. de Morveau, A.L. Lavoisier, C.L. Berthollet et A.F. de Fourcroy, Méthode de Nomenclature Chimique (Cuchet, Paris, 1787)Google Scholar
  24. 24.
    AL Lavoisier, Traité Elémentaire de Chimique (Paris, 1789)Google Scholar
  25. 25.
    R. Fox, The Caloric Theory of Gases (Clarendon Press, Oxford, 1971)Google Scholar
  26. 26.
    R.J. Haüy, Traité Élémentaire de Physique (Courcier, Paris, 1806). Tome 1, seconde éditionGoogle Scholar
  27. 27.
    E Darwin, Frigorific experiments on the mechanical expansion of air. Phil. Trans. R. Soc. 78, 43–52 (1788)CrossRefGoogle Scholar
  28. 28.
    J.B. Biot, Sur la théorie du son. J. Phys. 55, 173–182 (1802)Google Scholar
  29. 29.
    B.S. Finn, Laplace and the speed of sound. Isis. 55, 7–19 (1964)CrossRefzbMATHGoogle Scholar
  30. 30.
    W.J.M. Rankine, On the thermo-dynamic theory of steam- engines with dry saturated steam, and its application to practice. Philos. Trans. R. Soc. 149, 177–192 (1859)CrossRefGoogle Scholar
  31. 31.
    S.D. Poisson, Théorie Mathématique de la Chaleur (Bachelier, Paris, 1835)Google Scholar
  32. 32.
    S.G. Brush, Statistical Physics and the Atomic Theory of Matter from Boyle and Newton to Landau and Onsager (Princeton University Press, Princeton, 1983)Google Scholar
  33. 33.
    J.L. Gay-Lussac, Recherches sur la dilatation des gaz et de vapeurs. Annales de Chimie. 43, 137–175 (1802)Google Scholar
  34. 34.
    F. Delaroche et J.-E. Bérard, Mémoire sur la détermination de la chaleur spécifique des différens gaz. Annales de Chimie 85, 72–110, 113–182 (1813)Google Scholar
  35. 35.
    A.T. Petit et P.L. Dulong, Sur quelques points importans de la théorie de chaleur. Annales de Chimie et de Physique 10, 395–413 (1819)Google Scholar
  36. 36.
    S.D. Poisson, Mémoire sur la théorie du son. J. de L’É,cole Polytechnique. 7, 319–392 (1808)Google Scholar
  37. 37.
    P.S. Laplace, Sur la vitesse du son dans l’air et dans l’eau. Annales de Chimie et de Physique. 3, 238–241 (1816)Google Scholar
  38. 38.
    P.S. Laplace, Développement de la théorie des fluides élastiques, application de cette théorie a la vitesse du son. Connaissance des Temps ou des Mouvements Célestes à l’Usage des Astronomes et des Navigateurs, pour l’an. 1825, 219–227, 302–323 (1822)Google Scholar
  39. 39.
    P.S. Laplace, Sur la vitesse du son. Annales de Chimie et de Physique. 20, 266–268 (1822)Google Scholar
  40. 40.
    P.L. Dulong, Recherche sur la chaleur spécifique des fluides élastiques. Annales de Chimie et de Physique. 41, 113–159 (1829)Google Scholar
  41. 41.
    S.D. Poisson, Sur la vitesse du son. Connaissance des Temps ou des Mouvements Célestes à l’Usage des Astronomes et des Navigateurs, pour l’an 1826, 257–277 (1823)Google Scholar
  42. 42.
    S. Carnot, Réflexions sur la Puissance Motrice du Feu et sur les Machines propes à Developper cette Puissance (Bachelier, Paris, 1824)zbMATHGoogle Scholar
  43. 43.
    E. Clapeyron, Mémoire sur la puissance motrice de la chaleur. Journal de l’École Royale Polytechnique. 14, 153–190 (1834)Google Scholar
  44. 44.
    G. Coriolis, Du Calcul de l’Effet des Machines, ou Considérations sur l’Emploi des Moteurs et sur leur Évaluation (Carilian-Goeury, Paris, 1826)Google Scholar
  45. 45.
    W. Thomson, On an absolute thermodynamic scale, founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Philos. Mag. 33, 313–317 (1848)Google Scholar
  46. 46.
    R. Clausius, Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik und Chemie. 79, 368–397, 500–524 (1850)ADSCrossRefGoogle Scholar
  47. 47.
    W. Thomson, An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam. Trans. Edin. R. Soc. 16, 541–574 (1849)CrossRefGoogle Scholar
  48. 48.
    J.R. Mayer, Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie. 42, 233–240 (1842)CrossRefGoogle Scholar
  49. 49.
    J.R. Mayer, Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel, Ein Beitrag zur Naturkunde (Drechsler, Heilbronn, 1845)Google Scholar
  50. 50.
    J.P. Joule, On the calorific effects of magneto-electricity, and on the mechanical value of heat. Philos. Mag. 23, 263–276, 347–355, 435–443 (1843)Google Scholar
  51. 51.
    J.P. Joule, On the mechanical equivalent of heat. Philos. Trans. R. Soc. 140, 61–82 (1850)CrossRefGoogle Scholar
  52. 52.
    J.P. Joule, On the changes of temperature produced by the rarefaction and condensation of air. Philos. Mag. 26, 369–383 (1845)Google Scholar
  53. 53.
    R. Clausius, Über eine veränderte Form des zweiten Hauptsatzes des mechanischen Wärmetheorie. Annalen der Physik und Chemie. 93, 481–506 (1854)ADSCrossRefGoogle Scholar
  54. 54.
    W. Thomson, On the dynamical theory of heat, with numerical results deduced from Mr. Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Trans. R. Soc. Edin. 20, 261–288 (1853). Read 17th March 1851CrossRefGoogle Scholar
  55. 55.
    T.S. Kuhn, Energy conservation as an example of simultaneous discovery. Critical Problems in the History of Science, ed. by M. Clagett (University of Wiconsin Press, Madison, 1969), pp. 321–356Google Scholar
  56. 56.
    H. Helmholtz, Über die Erhaltung der Kraft (Reimer, Berlin, 1847)zbMATHGoogle Scholar
  57. 57.
    W. Thomson, On the dynamical theory of heat. Part V. On the quantities of mechanical energy contained in fluid in different states, as to temperature and density. Trans. R. Soc. Edin. 20, 475–482 (1853). Read December 15, 1851CrossRefGoogle Scholar
  58. 58.
    R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik und Chemie. 125, 353–400 (1865)ADSCrossRefGoogle Scholar
  59. 59.
    R. Clausius, Ueber die Anwendung des Satzes von der Aequivalenz der Verwandlungen auf die innere Arbeit. Annalen der Physik und Chemie. 116, 73–110 (1862)ADSCrossRefGoogle Scholar
  60. 60.
    J.W. Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surface. Trans. Connect. Acad. 2, 382–404 (Dec. 1873)Google Scholar
  61. 61.
    W. Rankine, A Manual of the Steam Engine and Other Prime Movers (Griffin, London, 1859)Google Scholar
  62. 62.
    C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909)MathSciNetCrossRefGoogle Scholar
  63. 63.
    M. Born, Kritische Betrachtungen zur traditionelle Darstellung der Thermodynamik. Physikalische Zeitschrift. 22, 218–224, 249–254, 282–286 (1921)Google Scholar
  64. 64.
    E. Fermi, Thermodynamics. Prentice Hall (1937)Google Scholar
  65. 65.
    A.B. Pippard, The Elements of Classical Thermodynamics (Cambridge University Press, Cambridge, 1957)zbMATHGoogle Scholar
  66. 66.
    H.B. Callen, Thermodynamics (Wiley, New York, 1960)zbMATHGoogle Scholar
  67. 67.
    H.A. Buchdahl, The Concepts of Classical Thermodynamics (Cambridge University Press, Cambridge, 1966)zbMATHGoogle Scholar
  68. 68.
    M.J. de Oliveira, Equilibrium Thermodynamics, 2nd edn. (Springer, Berlin, 2017)CrossRefzbMATHGoogle Scholar
  69. 69.
    M. Planck, Vorlesungen über Thermodynamik (Veit, Leipzig, 1897)zbMATHGoogle Scholar
  70. 70.
    M.W. Zemansky, Heat and Thermodynamics (McGraw-Hill, New York, 1937)zbMATHGoogle Scholar
  71. 71.
    W. Pauli, Thermodynamik und kinetische Gastheorie, Verein der Mathematiker und Physiker an der E. T. H. Zürich (1952)Google Scholar
  72. 72.
    A. Sommerfeld, Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956)zbMATHGoogle Scholar
  73. 73.
    T. Ehrenfest-Afanassjewa, Zur Axiomatisierung des zweiten Hauptsatzes der Thermodynamik. Zeitschrift für Physik. 33, 933–945 (1925)ADSCrossRefzbMATHGoogle Scholar
  74. 74.
    J.W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Connect. Acad. 3 108–248. Oct. 1875-May 1876, 343–524 May 1877-July 1878Google Scholar
  75. 75.
    L. Tisza, The thermodynamics of phase equilibrium. Ann. Phys. 13, 1–92 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    J.C. Maxwell, Theory of Heat, 4th edn. (Longmans, London, 1875)Google Scholar
  77. 77.
    W. Nernst, Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes (Knapp, Halle, 1918)zbMATHGoogle Scholar
  78. 78.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)ADSCrossRefzbMATHGoogle Scholar
  79. 79.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Thomas, Springfield, 1955)zbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of São PauloSão PauloBrazil

Personalised recommendations