Skip to main content
Log in

CTAB-Assisted Solvothermal Growth and Optical Characterization of Flower-Like ZnS Structures

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Flower-like ZnS structures have been prepared by solvothermal method with the assistance of cetyl trimethyl ammonium bromide (CTAB). The effects of different experimental conditions on the morphology of ZnS structure have been investigated. The performances of ZnS structures have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), room temperature photoluminescence (PL), and UV–visible absorption spectroscopy. The XRD patterns indicate that the prepared ZnS structures are highly crystallized, which are of hexagonal phase. The SEM images indicate that the main role of CTAB is to assemble the ZnS flakes together to form the flower-like structures, and the reaction time affects the morphology of ZnS. The growth mechanism for the formation of flower-like ZnS structure is also described. The absorption and emission bands gradually shift towards longer wavelength due to the transformation of flower-like ZnS nanoflowers from ZnS flakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.H. Ye, X.S. Fang, G.H. Li, L.D. Zhang, Origin of the green photoluminescence from zinc sulphide nanobelts. Appl. Phys. Lett. 85, 3035 (2004)

    Article  ADS  Google Scholar 

  2. A.L. Rogach, N. Gaponik, J.M. Lupton, C. Bertoni, D.E. Gallardo, S. Dunn, N.L. Pira, M. Paderi, P. Repetto, S.G. Romanov, C. O’Dwyer, C.M.S. Torres, A. Eychmuller, Light-emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 47, 6538 (2008)

    Article  Google Scholar 

  3. M. Dur, S.M. Goodnick, S.S. Pennathur, J.F. Wager, M. Reigrotzki, R. Redmer, High-field transport and electroluminescence in ZnS phosphor layers. J. Appl. Phys. 83, 3176 (1998)

    Article  ADS  Google Scholar 

  4. Z.G. Chen, J. Zou, G. Liu, X.D. Yao, F. Li, X.L. Yuan et al., Growth, cathodoluminescence and field emission of ZnS tetrapod tree like heterostructures. Adv. Funct. Mater. 18, 3063 (2008)

    Article  Google Scholar 

  5. E. Bringuier, Tentative anatomy of ZnS-type electroluminescence. J. Appl. Phys. 75, 291–312 (1994)

    Article  Google Scholar 

  6. D.R. Frankle, Electroluminescence of ZnS single-crystal with cathode barrier. Phys. Rev. 111, 1540–1549 (1958)

    Article  ADS  Google Scholar 

  7. Y.I. Golovin, R.B. Morgunov, A.A. Baskakov, S.Z. Shmurak, Effect of a magnetic field on the electroluminescence intensity of single-crystal ZnS. Phys. Solid. State. 41, 1783–1785 (1999)

    Article  ADS  Google Scholar 

  8. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan et al., Mass production and high photocatalytic activity of ZnSnanoporous nanoparticles. Angew. Chem. Int. Ed. 44, 1269–1273 (2005)

    Article  Google Scholar 

  9. M. Kanemoto, T. Shiragami, C. Pac, S. Yanagida, Semiconductor photocatalysis: effective photoreduction of carbon dioxidecatalyzed by ZnS quantum crystallites with low density of surface defects. J. Phys. Chem. 96, 3521–3526 (1992)

    Article  Google Scholar 

  10. F. Lu, W.P. Cai, Y.G. Zhang, Y. Li, F.Q. Sun, S.H. Heo et al., Fabrication and field-emission performance of zinc sulphidenanobeltarrays. J. Phys. Chem. C. 111, 13385–13392 (2007)

    Article  Google Scholar 

  11. X.S. Fang, Y. Bando, M.Y. Liao, T.Y. Zhai, U.K. Gautam, L. Li, Y. Koide, D. Golberg, An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 20, 500–508 (2010)

    Article  Google Scholar 

  12. X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, L. Baodan, Z. Tianyou, S. Takashi, K. Yasuo, G. Dmitri, Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)

    Article  Google Scholar 

  13. Z.G. Chen, J. Zou, G. Liu, H.F. Lu, F. Li, G.Q. Lu, H.M. Cheng, Silicon-induced oriented ZnS nanobelts for hydrogen sensitivity. Nanotechnology 19, 055710 (2008)

    Article  ADS  Google Scholar 

  14. Y.G. Liu, P. Feng, X.Y. Xue, S.L. Shi, X.Q. Fu, C. Wang, Y.G. Wang, T.H. Wang, Room-temperature oxygen sensitivity of ZnS nanobelts. Appl. Phys. Lett. 90, 042109 (2007)

    Article  ADS  Google Scholar 

  15. Z. Li, B. Liu, X. Li, S. Yu, L. Wang, Y. Hou, Y. Zou, M. Yao, Q. Li, B. Zou, T. Cui, G. Zou, G. Wang, Y. Liu, Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property. Nanotechnology 18, 255602 (2007)

    Article  ADS  Google Scholar 

  16. G.H. Yue, P.X. Yan, D. Yan, X.Y. Fan, M.X. Wang, D.M. Qu, J.Z. Liu, Hydrothermal synthesis of single-crystal ZnS nanowires. Appl. Phys. A. 84, 409–412 (2006)

    Article  ADS  Google Scholar 

  17. W. Yu, P. Fang, S. Wang, ZnS nanorod arrays synthesized by an aqua-solution hydrothermal process upon pulse-plating Zn nanocrystallines. Appl. Surf. Sci. 255, 5709–5713 (2009)

    Article  ADS  Google Scholar 

  18. Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee, S.T. Lee, Hydrogen assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv. Mater. 15, 323 (2003)

    Article  Google Scholar 

  19. Q.J. Feng, D.Z. Shen, J.Y. Zhang, H.W. Liang, D.X. Zhao, Y.M. Lu, X.W. Fan, Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition. J. Cryst. Growth 285, 561–565 (2015)

    Article  ADS  Google Scholar 

  20. Q. Xiong, J. Wang, O. Reese, L.C. Lew, Y. Voon, P.C. Eklund, Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano. Lett. 4, 1991–1996 (2004)

    Article  ADS  Google Scholar 

  21. Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee, S.T. Lee, ZnS nanowires with wurtzite poly type modulated structure. Adv. Mater. 15, 1195 (2003)

    Article  Google Scholar 

  22. J.S. Roy, T. Pal Majumder, R. Dabrowski, A. Dey, P.P. Ray, Tuning photoluminescence of liquid crystals doped ZnS nanoflakes. Opt. Mater. 46, 467–471 (2015)

    Article  ADS  Google Scholar 

  23. M. Ethayaraja, C. Ravikumar, D. Muthukumaran, K. Dutta, R. Bandyopadhyaya, CdS-ZnS core-shell nanoparticle formation: experiment, mechanism, and simulation. J. Phys. Chem. C. 111, 3246–3252 (2007)

    Article  Google Scholar 

  24. S.Y. Lu, M.L. Wu, H.L. Chen, Polymer nanocomposite containing CdS–ZnS core–shell particles: optical properties and morphology. J. Appl. Phys. 93, 5789 (2003)

    Article  ADS  Google Scholar 

  25. A. Datta, S.K. Panda, S. Chaudhuri, Synthesis and optical and electrical properties of CdS/ZnS core/shell nanorods. J. Phys. Chem. C 111, 17260–17264 (2007)

    Article  Google Scholar 

  26. M. Lin, T. Sudhiranjan, C. Boothroyd, K.P. Loh, Influence of Au catalyst on the growth of ZnS nanowires. Chem. Phys. Lett. 400, 175–178 (2004)

    Article  ADS  Google Scholar 

  27. J.T. Hu, G.Z. Wang, C.X. Guo, D.P. Li, L.L. Zhang, J.J. Zhao, Au-catalyst growth and photoluminescence of zinc-blende and wurtziteZnSnanobelts via chemical vapor deposition. J. Lumin. 122, 172–175 (2007)

    Article  Google Scholar 

  28. C. Borchers, D. Stichtenoth, S. Muller, D. Schwen, C. Ronning, Catalyst-nanostructure interaction and growth of ZnS nanobelts. Nanotechnology 17, 1067–1071 (2006)

    Article  ADS  Google Scholar 

  29. Q. Li, C.R. Wang, Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett. 82, 1398–1400 (2003)

    Article  ADS  Google Scholar 

  30. Y.Q. Li, K. Zou, Y.Y. Shan, J.A. Zapien, S.T. Lee, Catalyst-assisted formation of nanocantilever arrays on ZnS nanoribbons by post annealing treatment. J. Phys. Chem. B. 110, 6759–6762 (2006)

    Article  Google Scholar 

  31. D. Moore, Y. Ding, Z.L. Wang, Hierarchical structured nano helices of ZnS. Angew. Chem. 118, 5274 (2006)

    Article  Google Scholar 

  32. X.S. Fang, U.K. Gautam, Y. Bando, D. Golberg, One-dimensional ZnS-based hetero-, core/shell and hierarchical nanostructures. J. Mater. Sci. Technol. 24, 520–528 (2008)

    Google Scholar 

  33. Q. Zhao, Y. Xie, Z. Zhang, X. Bai, Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity. Cryst. Growth Des. 7, 153 (2007)

    Article  Google Scholar 

  34. F. Lu, W. Cai, Y. Zhang, Y. Li, F. Sun, Fabrication and field-emission performance of zinc sulfide nanobelt arrays. J. Phys. Chem. C. 111, 13385 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are acknowledging the DST-FIST (SR/FST/PSI-175/2012) project, Department of Physics, University of Kalyani for UV–vis, Photoluminescence and XRD instrumental facilities and DST-PURSE program, University of Kalyani for providing SEM instrumental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pal Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, J.S., Pal Majumder, T. CTAB-Assisted Solvothermal Growth and Optical Characterization of Flower-Like ZnS Structures. Braz J Phys 46, 399–407 (2016). https://doi.org/10.1007/s13538-016-0429-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0429-0

Keywords

Navigation