Skip to main content
Log in

Controlled synthesis of flower like zinc oxide nanostructures using ionic liquid through a simple alkaline aqueous solution growth technique

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

This article describes the synthesis of ZnO nanostructures with different morphologies such as, flakes-like, flowers or mixture of both morphologies. The growth rate is enhanced by adjusting the concentration of ionic liquid (IL): Benzyltrimethylammoium hydroxide (BTMAH) and sodium hydroxide in reaction mixture. Different structures are obtained including a unique flower like ZnO nanostructures. These structures show three-order symmetry, groups of many oriented flakes and leaves grown on the branches symmetrically, indicating an interesting fractal growth. The products have been investigated by XRD, Scanning Electron Microscopy (SEM), Atomic force microscopy (AFM), Fourier Transform Infrared (FTIR), UV-Vis and photolumincence (PL). According to the investigation on the growth process, it was confirmed that as-prepared samples of ZnO nanoparticles morphologies and properties strongly dependant on the ratio of alkaline and IL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nakahara and H. Takasu, Appl. Phys. Lett. 25(79), 4139 (2001).

    Article  ADS  Google Scholar 

  2. A. R. Huston, Phys. Rev. 2(108), 222 (1957).

    ADS  Google Scholar 

  3. D. P. Norton, M. Ivill, Y. Li, Y. W. Kwon, J. M. Erie, H. S. Kim, K. Ip, S. J. Pearton, Y. W. Heo, S. Kim, B. S. Kang, F. Ren, A. F. Hebard, and J. Kelly, Thin Solids Films 496, 160 (2006).

    Article  ADS  Google Scholar 

  4. R. Martin, P. Fortunato Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla, and G. Kiriakidis, J. Appl. Phys. 3(96), 1398 (2004).

    Article  ADS  Google Scholar 

  5. B. B. Rao, Mater. Chem. Phys. 64, 62 (2000).

    Article  Google Scholar 

  6. E. Fortunato, A. Goncalves, A. Marques, A. Viana, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho, and R. Martins, Surf. Coat. Technol. 180–181, 20–25 (2004).

    Article  Google Scholar 

  7. N. Singh, R. M. Mehra, and A. Kapoor, J. Nano-Electron Phys. 3(1), 132 (2011).

    Google Scholar 

  8. V. Kumar, R. G. Singh, L. Purohit, and R. M. Mehra, J. Mater. Sci. Technol. 27(6), 481 (2011).

    Article  Google Scholar 

  9. N. D. Khupse and A. Kumar, Indian J. Chem. 49A, 635 (2010).

    Google Scholar 

  10. Ionic Liquids in Synthesis, Ed. by P. Wasserscheid and T. Welton (Wiley, New York, 2003).

    Google Scholar 

  11. R. D. Rogers and K. R. Seddon, Science 302, 792 (2003).

    Article  Google Scholar 

  12. K. R. Seddon, Nature Mat. 2, 363 (2003).

    Article  ADS  Google Scholar 

  13. A. Taubert, I. Arbell, A. Mecke, and P. Graf, Gold Bull. 39, 205 (2006).

    Article  Google Scholar 

  14. H. Zhu, J.-F. Huang, Z. Pan, and S. Dai, Chem. Mater. 18, 4473 (2006).

    Article  Google Scholar 

  15. T. Singh, T. J. Trivedi, and A. Kumar, Nanomater. Energy 1(NME4), 207 (2012).

    Article  Google Scholar 

  16. P. Chand, A. Gaur, and A. Kumar, J. Alloys Comp. 539, 174 (2012).

    Article  Google Scholar 

  17. F. Z. Haque, N. Singh, P. Pandey, and M. R. Parra, Optics 124(20), 4167 (2013).

    ADS  Google Scholar 

  18. C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, Sensors Actuators B: Chemical 140(2), 461 (2009).

    Article  Google Scholar 

  19. D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, Sensors Actuators B: Chemical 145-1(4), 167 (2010).

    Article  Google Scholar 

  20. A. Esmaielzadeh k., A. Shokuhfar, N. M. Farzalipour, N. A. Arefiana, and M. R. Vaezia, J. Optoelectron: Adv. Mater. 3(11), 289 (2009).

    Google Scholar 

  21. A. K. Zak, W. H. Abd. Majid, M. E. Abrishami, and R. Yousefi, Solid State Sci. 13(1), 251 (2011).

    Article  ADS  Google Scholar 

  22. I. Kazeminezhad, A. Sadollahkhani, and M. Farbod, Mater. Lett. 92, 29 (2013).

    Article  Google Scholar 

  23. A. Singh, R. Kumar, Mrs. N. Malhotra and Suman, Int. J. Sci. Emerg. Technol. Latest Trends 4(1), 49 (2012).

    MATH  Google Scholar 

  24. K. Nejati, Z. Rezvani, and R. Pakizevand, Int. Nano Lett. 1(2), 75 (2011).

    Google Scholar 

  25. Y. S. Kim, W. P. Tai, and S. J. Shu, Thin Solid Films 491(1–2), 153 (2005).

    Article  ADS  Google Scholar 

  26. E. A. Meulenkamp, J. Phys. Chem. B 102(40), 7764 (1998).

    Article  Google Scholar 

  27. Shuang Li, Ming Chen, and Xiang Dong Liu, Opt. Express 22(15), 18707 (2014).

    Article  Google Scholar 

  28. S. Kuriakose, N. Bhardwaj, J. Singh, B. Satpati, and S. Mohapatra, Beilstein J. Nanotechnol. 4, 763 (2013).

    Article  Google Scholar 

  29. H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, and B. K. Meyer, Appl. Phys. Lett. 80(2), 210 (2002).

    Article  ADS  Google Scholar 

  30. Saroj Kumar Patra, A Novel Chemical Approach to Fabricate ZnO Nanostructures (Master Technol. Thesis).

  31. P. Pandey, N. Singh, and F. Z. Haque, Optik 124(12), 1188 (2013).

    Article  ADS  Google Scholar 

  32. S. K. Gupta, A. Joshi, and M. Kaur, J. Chem. Sci. 122(1), 57 (2010).

    Article  Google Scholar 

  33. T. K. Kundu, N. Karak, P. Barik, and S. Saha, Int. J. Soft Comp. Eng. 1, 19 (2011).

    Google Scholar 

  34. M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).

    Article  Google Scholar 

  35. S. K. Mishra, S. Srivastava, R. K. Srivastava, A. C. Panday, and S. G. Prakash, Adv. Mat. Lett. 2(4), 298 (2011).

    Article  Google Scholar 

  36. M. R. Parra and F. Z. Haque, Optik 125, 4629 (2014).

    Article  ADS  Google Scholar 

  37. Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, Nanoscale Res. Lett. 2, 297 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fozia Z. Haque.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Haque, F.Z. Controlled synthesis of flower like zinc oxide nanostructures using ionic liquid through a simple alkaline aqueous solution growth technique. Opt. Spectrosc. 118, 756–764 (2015). https://doi.org/10.1134/S0030400X15050136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15050136

Keywords

Navigation