Skip to main content
Log in

Remarks on the Renormalization Properties of Lorentz- and CPT-Violating Quantum Electrodynamics

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we employ algebraic renormalization technique to show the renormalizability to all orders in perturbation theory of the Lorentz- and CPT-violating QED. Essentially, we control the breaking terms by using a suitable set of external sources. Thus, with the symmetries restored, a perturbative treatment can be consistently employed. After showing the renormalizability, the external sources attain certain physical values, which allow the recovering of the starting physical action. The main result is that the original QED action presents the three usual independent renormalization parameters. The Lorentz-violating sector can be renormalized by 19 independent parameters. Moreover, vacuum divergences appear with extra independent renormalization. Remarkably, the bosonic odd sector (Chern-Simons-like term) does not renormalize and is not radiatively generated. One-loop computations are also presented and compared with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For self-consistency, we just define

  2. For the explicit CPT features of the fields see Table 4 in terms of the sources at the Appendix B (see next section for the source-background correspondence).

  3. This can be understood in the following way: let Φμ and Q μ be a generic field and a background vector field, respectively. Under observer Lorentz transformation, i.e., exchange of references systems, these fields behave as \({\Phi }^{\prime \mu } ={\Lambda }^{\mu }_{\phantom {\mu }\nu }{\Phi }^{\nu } \) and \(Q^{\prime \mu } ={\Lambda }^{\mu }_{\phantom {\mu }\nu }Q^{\nu }\). On the other hand, under particle Lorentz transformation the reference systems do not transform, but the fields transform as \({\Phi }^{\prime \mu } ={\Lambda }^{\mu }_{\phantom {\mu }\nu }{\Phi }^{\nu } \) and \(Q^{\prime \mu } =Q^{\mu }\). The generalization to (pseudo-)tensorial backgrounds are immediate.

  4. Even though the ghost and anti-ghost fields are not required in the Abelian theory at Landau gauge, we opt to introduce them for the following reasons: (i) It is a direct way to keep the off-shell BRST symmetry of the action S 0. (ii) Due to the discrete Faddeev-Popov symmetry, the trivial and non-trivial sectors of the BRST cohomology become explicit (see Table 1). (iii) With the introduction of the b field, it is easy to see that photon propagator keeps its transversality to all orders in perturbation theory. (iv) As expected, the tree-level decoupling of the ghosts is kept at all orders in perturbation theory, see Section 4.1. This feature will bring important consequences for the renormalization properties of the CPT-odd bosonic violating sector of the action (2.1).

  5. The embedding concept used here is discussed in detail in Ref. [53].

  6. The external sources \(\overline {Y}\) and Y will be defined in Section 4 in order to control the nonlinear BRST transformations of the spinor fields.

  7. Clearly, in contrast to the background fields, the external sources are not “frozen” with respect to CPT symmetries. Hence, they enjoy discrete mappings. Thus Δ(−1) can be made CPT-invariant, avoiding a lot of counterterms and renormalization parameters. Furthermore, all of them, if included, are also avoided by the Ward identities of the model.

  8. The reader can see for instance [59], where the authors claim the absence of gauge anomalies at one-loop order, and point out the possibility of the renormalizability of the Lorentz-violating QED to all orders.

References

  1. D. Colladay, V.A. Kostelecky, Phys. Rev. D. 55, 6760 (1997). arXiv:hep-ph/9703464

    Article  ADS  Google Scholar 

  2. D. Colladay, V.A. Kostelecky, Phys. Rev. D. 58, 116002 (1998). arXiv:hep-ph/9809521

    Article  ADS  Google Scholar 

  3. R. Jackiw, V.A. Kostelecky, Phys. Rev. Lett. 82, 3572 (1999). arXiv:hep-ph/9901358

    Article  ADS  Google Scholar 

  4. V.A. Kostelecky, Phys. Rev. D. 69, 105009 (2004). arXiv:hep-th/0312310 hep-th/0312310

    Article  ADS  Google Scholar 

  5. V.A. Kostelecky, R. Potting, Gen. Rel. Grav. 37, 1675 (2005). Int. J. Mod. Phys. D 14, 2341 (2005). arXiv:gr-qc/0510124

    Article  ADS  MathSciNet  Google Scholar 

  6. J.S. Diaz, A. Kostelecky, Phys. Rev. D. 85, 016013 (2012). arXiv:1108.1799 [hep-ph]

    Article  ADS  Google Scholar 

  7. V. Bargmann, Annals Math. 48, 568 (1947)

    Article  MathSciNet  Google Scholar 

  8. V. Bargmann, E.P. Wigner, Proc. Nat. Acad. Sci. 34, 211 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Becchi, A. Rouet, R. Stora, Annals Phys. 98, 287 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  10. I.V. Tyutin, Lebedev Institute preprint No. 39. arXiv:0812.0580 [hep-th] (1975)

  11. T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl. 66, 1 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  12. V.A. Kostelecky, S. Samuel, Phys. Rev. D. 39, 683 (1989)

    Article  ADS  Google Scholar 

  13. Z. Guralnik, R. Jackiw, S.Y. Pi, A.P. Polychronakos, Phys. Lett. B. 517, 450 (2001). arXiv:hep-th/0106044

    Article  ADS  Google Scholar 

  14. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001). arXiv:hep-th/0105082 hep-th/0105082

    Article  ADS  MathSciNet  Google Scholar 

  15. J.M. Carmona, J.L. Cortes, J. Gamboa, F. Mendez, Phys. Lett. B. 565, 222 (2003). arXiv:hep-th/0207158

    Article  ADS  MathSciNet  Google Scholar 

  16. C.E. Carlson, C.D. Carone, R.F. Lebed, Phys. Lett. B. 549, 337 (2002). arXiv:hep-ph/0209077

    Article  ADS  Google Scholar 

  17. M.M. Sheikh-Jabbari, Phys. Rev. Lett. 84, 5265 (2000). arXiv:hep-th/0001167

    Article  ADS  MathSciNet  Google Scholar 

  18. M.S. Berger, Phys. Rev. D. 68, 115005 (2003). arXiv:hep-th/0308036 hep-th/0308036

    Article  ADS  Google Scholar 

  19. M.S. Berger, V.A. Kostelecky, Phys. Rev. D. 65, 091701 (2002). arXiv:hep-th/0112243

    Article  ADS  Google Scholar 

  20. S. Groot Nibbelink, M. Pospelov, Phys. Rev. Lett. 94, 081601 (2005). arXiv:hep-ph/0404271

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Alfaro, M. Reyes, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. D. 70, 084002 (2004). arXiv:gr-qc/0404113

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Bluhm, V.A. Kostelecky, N. Russell, Phys. Rev. Lett. 79, 1432 (1997). arXiv:hep-ph/9707364

    Article  ADS  Google Scholar 

  23. D. Bear, R.E. Stoner, R.L. Walsworth, V.A. Kostelecky, C.D. Lane, Phys. Rev. Lett. 85, 5038 (2000). Erratum-ibid. 89, 209902 (2002). arXiv:physics/0007049

    Article  ADS  Google Scholar 

  24. R. Bluhm, V.A. Kostelecky, Phys. Rev. Lett. 84, 1381 (2000). arXiv:hep-ph/9912542

    Article  ADS  Google Scholar 

  25. R. Bluhm, V.A. Kostelecky, N. Russell, Phys. Rev. Lett. 82, 2254 (1999). arXiv:hep-ph/9810269

    Article  ADS  Google Scholar 

  26. V.A. Kostelecky, N. Russell, Rev. Mod. Phys. 83, 11 (2011). arXiv:0801.0287 [hep-ph]

    Article  ADS  Google Scholar 

  27. C. Adam, F.R. Klinkhamer, Nucl. Phys. B. 607, 247 (2001). arXiv:hep-ph/0101087

    Article  ADS  Google Scholar 

  28. C. Adam, F.R. Klinkhamer, Phys. Lett. B. 513, 245 (2001). arXiv:hep-th/0105037

    Article  ADS  Google Scholar 

  29. V.A. Kostelecky, R. Lehnert, Phys. Rev. D. 63, 065008 (2001). arXiv:hep-th/0012060

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Adam, F.R. Klinkhamer, Nucl. Phys. B. 657, 214 (2003). arXiv:hep-th/0212028

    Article  ADS  Google Scholar 

  31. V.A. Kostelecky, C.D. Lane, A.G.M. Pickering, Phys. Rev. D. 65, 056006 (2002). arXiv:hep-th/0111123

    Article  ADS  Google Scholar 

  32. O. Piguet, S.P. Sorella, Lect. Notes Phys. M. 28, 1 (1995)

    Article  MathSciNet  Google Scholar 

  33. O.M. Del Cima, D.H.T. Franco, A.H. Gomes, J.M. Fonseca, O. Piguet, Phys. Rev. D. 85, 065023 (2012). arXiv:1202.0009 [hep-th]

    Article  ADS  Google Scholar 

  34. O.M. Del Cima, J.M. Fonseca, D.H.T. Franco, O. Piguet, Phys. Lett. B. 688, 258 (2010). arXiv:0912.4392 [hep-th]

    Article  ADS  Google Scholar 

  35. G. de Berredo-Peixoto, I.L. Shapiro, Phys. Lett. B. 642, 153 (2006). arXiv:hep-th/0607109

    Article  ADS  Google Scholar 

  36. D. Anselmi, M. Halat, Phys. Rev. D. 76, 125011 (2007). arXiv:0707.2480 [hep-th]

    Article  ADS  Google Scholar 

  37. D. Anselmi, Phys. Rev. D. 89(12), 125024 (2014). arXiv:1405.3110 [hep-th]

    Article  ADS  Google Scholar 

  38. D. Anselmi, E. Ciuffoli, Phys. Rev. D. 81, 085043 (2010). arXiv:1002.2704 [hep-ph]

    Article  ADS  Google Scholar 

  39. D. Anselmi, M. Taiuti, Phys. Rev. D. 81, 085042 (2010). arXiv:0912.0113 [hep-ph]

    Article  ADS  Google Scholar 

  40. S.M. Carroll, G.B. Field, R. Jackiw, Phys. Rev. D. 41, 1231 (1990)

    Article  ADS  Google Scholar 

  41. O. Piguet, A. Rouet, Phys. Rept. 76, 1 (1981)

    Article  ADS  Google Scholar 

  42. J.H. Lowenstein, Phys. Rev. D. 4, 2281 (1971)

    Article  ADS  Google Scholar 

  43. T.E. Clark, J.H. Lowenstein, Nucl. Phys. B. 113, 109 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  44. Y.M.P. Lam, Phys. Rev. D. 6, 2145 (1972)

    Article  ADS  Google Scholar 

  45. M. Duetsch, K. Fredenhagen, Commun. Math. Phys. 219, 5 (2001). arXiv:hep-th/0001129

    Article  ADS  Google Scholar 

  46. K. Symanzik, Commun. Math. Phys. 16, 48 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  47. D. Zwanziger, Phys. Nucl. B. 399, 477 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Dudal, R.F. Sobreiro, S.P. Sorella, H. Verschelde, Phys. Rev. D. 72, 014016 (2005). arXiv:hep-th/0502183

    Article  ADS  Google Scholar 

  49. L. Baulieu, S.P. Sorella, Phys. Lett. B. 671, 481 (2009). arXiv:0808.1356 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  50. L. Baulieu, M.A.L. Capri, A.J. Gomez, V.E.R. Lemes, R.F. Sobreiro, S.P. Sorella, Eur. Phys. J. C. 66, 451 (2010). arXiv:0901.3158 [hep-th]

    Article  ADS  Google Scholar 

  51. D. Dudal, S.P. Sorella, N. Vandersickel, Phys. Rev. D. 84, 065039 (2011). arXiv:1105.3371 [hep-th]

    Article  ADS  Google Scholar 

  52. A.D. Pereira, R.F. Sobreiro, Eur. Phys. J. C. 73, 2584 (2013). arXiv:1308.4159 [hep-th]

    Article  ADS  Google Scholar 

  53. T.R.S. Santos, R.F. Sobreiro, Phys. Rev. D. 91(2), 025008 (2015). arXiv:1404.4846 [hep-th]

    Article  ADS  Google Scholar 

  54. G. Bonneau, Nucl. Phys. B. 593, 398 (2001). arXiv:hep-th/0008210 hep-th/0008210

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Perez-Victoria, Phys. Rev. Lett. 83, 2518 (1999). arXiv:hep-th/9905061 hep-th/9905061

    Article  ADS  Google Scholar 

  56. C. Itzykson, J.B. Zuber. International Series In Pure and Applied Physics (Mcgraw-hill, New York, 1980), p. 705

    Google Scholar 

  57. J.C. Collins. Renormalization. An Introduction To Renormalization, The Renormalization Group, And The Operator Product Expansion (Cambridge University Press, Cambridge, 1984), p. 380

    Book  MATH  Google Scholar 

  58. W.H. Furry, Phys. Rev. 81, 115 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  59. D.H.T. Franco, A.H. Gomes, J. Phys. A. 46, 045401 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  60. C.G. Bollini, J.J. Giambiagi, Phys. Lett. B. 40, 566 (1972)

    Article  ADS  Google Scholar 

  61. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B. 44, 189 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  62. T.R.S. Santos, R.F. Sobreiro, To be published

  63. P.W. Higgs, Phys. Lett. 12, 132 (1964)

    Article  ADS  Google Scholar 

  64. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  65. R. Fukuda, T. Kugo, Prog. Theor. Phys. 60, 565 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  66. V.P. Gusynin, V.A. Miransky, Phys. Lett. B. 76, 585 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  67. J.M. Cornwall, Phys. Rev. D. 26, 1453 (1982)

    Article  ADS  Google Scholar 

  68. H. Verschelde, K. Knecht, K. Van Acoleyen, M. Vanderkelen, Phys. Lett. B. 516, 307 (2001). arXiv:hep-th/0105018

    Article  ADS  Google Scholar 

  69. N. Maggiore, M. Schaden, Phys. Rev. D. 50, 6616 (1994). arXiv:hep-th/9310111

    Article  ADS  Google Scholar 

  70. D. Dudal, S.P. Sorella, Phys. Rev. D. 86, 045005 (2012). arXiv:1205.3934 [hep-th]

    Article  ADS  Google Scholar 

  71. S.D. Joglekar, B.W. Lee, Annals Phys. 97, 160 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  72. M. Henneaux, Phys. Lett. B. 313, 35 (1993). Erratum-ibid. B 316, 633 (1993). arXiv:hep-th/9306101

    Article  ADS  MathSciNet  Google Scholar 

  73. J.C. Collins, R.J. Scalise, Phys. Rev. D. 50, 4117 (1994). arXiv:hep-ph/9403231

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Brazilian National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Fluminense Federal University (PROPPI-UFF) are acknowledge for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago R. S. Santos.

Appendices

Appendix A: Vacuum Terms

We will discuss now the vacuum action, i.e., the action that taken account only terms depending on the sources. Since this action does not interfere with the renormalization of the sources, or with the dynamical content of the model, this discussion does not mess with the results obtained so far. However, we will not describe here all vacuum terms. We will present here only the most difficult vacuum terms which demand a careful analysis:

$$\begin{array}{@{}rcl@{}} {\Sigma}_{V}&=&\int d^{4}x\left\{\alpha_{1}\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} \bar{A}^{\nu}+\alpha_{2}m\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} E^{\nu}\right.\\ &&\left.+\alpha_{3}m^{2}\bar{A}_{\mu} \bar{A}^{\mu} E_{\mu} E^{\mu} +\alpha_{4}m^{2}\bar{A}_{\mu} \bar{A}_{\nu} E^{\mu} E^{\nu}\right.\\ &&\left.+\alpha_{5}m^{3} \bar{A}_{\mu} E^{\mu} E_{\nu} E^{\nu}+\alpha_{6}m^{4}E_{\mu} E^{\mu} E_{\nu} E^{\nu}\right\}\\ &&+s\int d^{4}x\left\{ \zeta\lambda_{\mu\nu\alpha}J^{\mu\beta\gamma}J^{\nu}_{\phantom{\nu} \beta\kappa}J_{\gamma}^{\phantom{\gamma}\kappa\alpha}\right.\\ &&+\left.\vartheta_{1}\bar{\kappa}_{\mu\nu\alpha\beta}\lambda^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&\left.+\vartheta_{2}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\theta\gamma}C_{\theta\gamma}\lambda^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&+\left.\vartheta_{3}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\tau\zeta}\eta^{\gamma\xi}\bar{\kappa}_{\tau\gamma\zeta\xi}\lambda^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right\}\;,\\ &=&\int d^{4}x\left\{\alpha_{1}\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} \bar{A}^{\nu}+\alpha_{2}m\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} E^{\nu}\right.\\\ &&\left.+\alpha_{3}m^{2}\bar{A}_{\mu} \bar{A}^{\mu} E_{\mu} E^{\mu} +\alpha_{4}m^{2}\bar{A}_{\mu} \bar{A}_{\nu} E^{\mu} E^{\nu}\right.\\ &&+\left.\alpha_{5}m^{3} \bar{A}_{\mu} E^{\mu} E_{\nu} E^{\nu}+\alpha_{6}m^{4}E_{\mu} E^{\mu} E_{\nu} E^{\nu}\right\}\\ &&+\int d^{4}x\left\{ \zeta J_{\mu\nu\alpha}J^{\mu\beta\gamma}J^{\nu}_{\phantom{\nu} \beta\kappa}J_{\gamma}^{\phantom{\gamma}\kappa\alpha}\right.\\ &&+\left.\vartheta_{1}\bar{\kappa}_{\mu\nu\alpha\beta}J^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&\left.+\vartheta_{2}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\theta\gamma}C_{\theta\gamma}J^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&+\left.\vartheta_{3}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\tau\zeta}\eta^{\gamma\xi}\bar{\kappa}_{\tau\gamma\zeta\xi}J^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right\}\;. \end{array} $$
(A.1)

The terms that depend on the electron mass are introduced in order to guarantee the quantum stability of the vacuum action. This can be easily understood by fact that the sources \(\bar {A}^{\mu }\) and E μ suffer mix under quantum corrections. The same can be said about the sources \(\bar {\kappa }_{\mu \nu \alpha \beta }\) and C ν μ .

At the physical limit of the sources (3.6), the action (A.1) reduces to

$$\begin{array}{@{}rcl@{}} {\Sigma}_{Vphys}&=&\int d^{4}x\left\{\alpha_{1}a_{\mu} a^{\mu} a_{\nu} a^{\nu}+\alpha_{2}ma_{\mu} a^{\mu} a_{\nu} e^{\nu}\right.\\ &&\left.+\alpha_{3}m^{2}a_{\mu} a^{\mu} e_{\mu} e^{\mu} +\alpha_{4}m^{2}a_{\mu} a_{\nu} e^{\mu} e^{\nu}\right.\\ &&+\left.\alpha_{5}m^{3} a_{\mu} e^{\mu} e_{\nu} e^{\nu}+\alpha_{6}m^{4}e_{\mu} e^{\mu} e_{\nu} e^{\nu}+6\zeta v^{4}\right.\\ &&\left.+(8\vartheta_{3}-2\vartheta_{1})\kappa^{\alpha\mu\sigma}_{\phantom{\alpha\mu\sigma}\mu}v_{\alpha} v_{\sigma} v^{2} +\right.\\ &&+\left.8\vartheta_{2}c^{\alpha\sigma}v_{\alpha} v_{\sigma} v^{2}\right\}\;, \end{array} $$
(A.2)

which shows the nontrivial vacuum of the model. Now we can proceed as in Section 4.2 and seek for the most general counterterm compatible with Ward identities shown at (4.7):

$$\begin{array}{@{}rcl@{}} {{\Sigma}_{V}^{c}}&=&\int d^{4}x\left\{b_{1}\alpha_{1}\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} \bar{A}^{\nu}+b_{2}\alpha_{2}m\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} E^{\nu}\right.\\ &&\left.+b_{3}\alpha_{3}m^{2}\bar{A}_{\mu} \bar{A}^{\mu} E_{\mu} E^{\mu}+b_{4}\alpha_{4}m^{2}\bar{A}_{\mu} \bar{A}_{\nu} E^{\mu} E^{\nu}\right.\\ &&\left.+b_{5}\alpha_{5}m^{3} \bar{A}_{\mu} E^{\mu} E_{\nu} E^{\nu}+b_{6}\alpha_{6}m^{4}E_{\mu} E^{\mu} E_{\nu} E^{\nu}\right\}\\ &&+\mathcal{S}_{\Sigma}\tilde{\Delta}^{(-1)}\;. \end{array} $$
(A.3)

where

$$\begin{array}{@{}rcl@{}} \tilde{\Delta}^{(-1)}&=&\int d^{4}x\left\{b_{7}\zeta\lambda_{\mu\nu\alpha}J^{\mu\beta\gamma}J^{\nu}_{\phantom{\nu} \beta\kappa}J_{\gamma}^{\phantom{\gamma}\kappa\alpha}\right.\\ &&\left.+b_{8}\vartheta_{1}\bar{\kappa}_{\mu\nu\alpha\beta}\lambda^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&+\left.b_{9}\vartheta_{2}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\theta\gamma}C_{\theta\gamma}\lambda^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&\left.+b_{10}\vartheta_{3}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\tau\zeta}\eta^{\gamma\xi}\bar{\kappa}_{\tau\gamma\zeta\xi}\lambda^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right\}\;.\\ \end{array} $$
(A.4)

It is then straightforward to show that the most general counterterm is

$$\begin{array}{@{}rcl@{}} {{\Sigma}_{V}^{c}}&=&\int d^{4}x\left\{b_{1}\alpha_{1}\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} \bar{A}^{\nu}+b_{2}\alpha_{2}m\bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} E^{\nu}\right.\\ &&\left.+b_{3}\alpha_{3}m^{2}\bar{A}_{\mu} \bar{A}^{\mu} E_{\mu} E^{\mu}+b_{4}\alpha_{4}m^{2}\bar{A}_{\mu} \bar{A}_{\nu} E^{\mu} E^{\nu}\right.\\ &&\left.+b_{5}\alpha_{5}m^{3} \bar{A}_{\mu} E^{\mu} E_{\nu} E^{\nu}+b_{6}\alpha_{6}m^{4}E_{\mu} E^{\mu} E_{\nu} E^{\nu}\right.\\ &&+b_{7}\zeta J_{\mu\nu\alpha}J^{\mu\beta\gamma}J^{\nu}_{\phantom{\nu}\beta\kappa}J_{\gamma}^{\phantom{\gamma}\kappa\alpha}\ \\&&+b_{8}\left.\vartheta_{1}\bar{\kappa}_{\mu\nu\alpha\beta}J^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&+\left.b_{9}\vartheta_{2}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\theta\gamma}C_{\theta\gamma}J^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right.\\ &&\left.+b_{10}\vartheta_{3}T_{\mu\nu\alpha\beta}^{\phantom{\mu\nu\alpha\beta}\tau\zeta}\eta^{\gamma\xi}\bar{\kappa}_{\tau\gamma\zeta\xi}J^{\mu\rho\omega}J^{\nu}_{\phantom{\nu}\rho\sigma}J^{\alpha}_{\phantom{\alpha}\omega\delta}J^{\beta\sigma\delta}\right\}\;.\\ \end{array} $$
(A.5)

To finish the renormalizability of the vacuum term, it is needed to check the stability of the vacuum action. Thus, we have to show that

$$\begin{array}{@{}rcl@{}} {\Sigma}_{V}(J, \xi)+{\varepsilon{\Sigma}^{c}_{V}}(J,\xi)&=&{{\Sigma}_{V}^{0}}(J_{0}, \xi_{0})+\mathcal{O}(\varepsilon^{2})\;, \end{array} $$
(A.6)

where the bare parameters are defined as

$$\begin{array}{@{}rcl@{}} \xi_{0}&=&Z_{\xi}\xi\;,\;\;\;\;\;\;\;\;\xi \in \left\{\zeta,\alpha_{i},\vartheta_{j}\right\}\;. \end{array} $$
(A.7)

It is not difficult to achieve the following consistent expressions:

$$\begin{array}{@{}rcl@{}} Z_{\alpha_{1}}\!&=&\!1\!+\varepsilon\left(b_{1}\,-\,4a_{15}\!+4a_{3}\right)\;,\\ Z_{\alpha_{2}}\!&=&\!1\!+\varepsilon\left(b_{2}\,-\,a_{4}\,-\,3a_{15}\,-\,a_{10}\,+\,5a_{3}\,-\,4a_{16}\frac{\alpha_{1}}{\alpha_{2}}\right)\;,\\ Z_{\alpha_{3}}\!&=&\!1\!+\varepsilon\left(b_{3}\,-\,2a_{4}\,-\,2a_{15}\,-\,2a_{10}\,+\,6a_{3}\,-\,a_{16}\frac{\alpha_{2}}{\alpha_{3}}\right)\;,\\ Z_{\alpha_{4}}\!&=&\!1\!+\varepsilon\left(b_{4}\!-2a_{4}\!-2a_{15}\!-2a_{10}\!+6a_{3}\,-\,2a_{16}\frac{\alpha_{2}}{\alpha_{4}}\right)\;,\\ Z_{\alpha_{5}}\!&=&\!1\!+\varepsilon\left(b_{5}\!-3a_{4}\!-a_{15}\!-3a_{10}+7a_{3}-2a_{16}\left(\frac{\alpha_{3}+\alpha_{4}}{\alpha_{5}}\right)\right)\;,\\ Z_{\alpha_{6}}&=&1+\varepsilon\left(b_{6}-4a_{4}+4a_{3}-a_{16}\frac{\alpha_{5}}{\alpha_{6}}\right)\;,\\ Z_{\zeta}&=&1+\varepsilon\left(b_{7}+4a_{0}\right)\;,\\ Z_{\vartheta_{1}}&=&1+\varepsilon\left(b_{8}-a_{1}+5a_{0}\right)\;,\\ Z_{\vartheta_{2}}&=&1+\varepsilon\left(b_{9}-a_{5}-a_{6}+a_{3}+4a_{0}-a_{2}\left(\frac{\vartheta_{1}-4\vartheta_{3}}{\vartheta_{2}}\right)\right)\;,\\ Z_{\vartheta_{3}}&=&1+\varepsilon\left(b_{10}-a_{1}+5a_{0}-a_{10}\frac{\alpha_{2}}{\alpha_{3}}\right)\;. \end{array} $$
(A.8)

The proof that all other possible pure source term is also renormalizable follows the same prescription.

Appendix B: Discrete Mappings of the Sources

The coupling between the local sources and the Dirac bilinears depend on behavior of sources and Dirac bilinears under discrete mappings. Besides of the quantum numbers shown in the Table 3, the discrete mappings displayed in Table 4 will also select the allowed couplings.

Table 4 Discrete mappings of the sources

Appendix C: Feynman Rules

In this appendix, we provide the Feynman rules used in Section 5. Instead of dealing with the direct rules that could be extracted from the action (2.1), we opt to treat the breaking terms as insertions. Thus, the set of propagators is the usual QED propagators: For the electron

figure a

For the photon:

figure b

where p μ is the particle momentum.

The fermion-photon vertex is given by

figure c

The Feynman rules for the Lorentz-violating QED terms are obtained by insertions of Lorentz-violating coefficients in fermion and photon propagators, namely

figure d

There is also an insertion at the fermion-photon vertex given by

figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S. Santos, T.R., Sobreiro, R.F. Remarks on the Renormalization Properties of Lorentz- and CPT-Violating Quantum Electrodynamics. Braz J Phys 46, 437–452 (2016). https://doi.org/10.1007/s13538-016-0423-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0423-6

Keywords

Navigation