Skip to main content
Log in

Discussion About the Magnetic Field Dimensionality, Invariant Axis Condition, and Coulomb Gauge to Solve the Grad-Shafranov Equation

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We discuss the relationship between the Coulomb gauge, the existence of an invariant axis, and the dimensionality (2-D or 2\(\frac {1}{2}\)-D) of the magnetic field in a mathematical-physical formalism that leads us to the Grad-Shafranov (GS) equation. In the literature, we found that a 2-D magnetic structure is used as a prerequisite to derive the GS equation from the Vlasov equation. However, other consulted works are based on a 2\(\frac {1}{2}\)-D (two-and-a-half) magnetic structure as a prerequisite to derive the GS equation from the balance of forces between the pressure gradient and the magnetic force, respectively. We replaced the magnetic vector potential on Ampère’s equation and used the Coulomb gauge to obtain a system of three Poisson equations, one for each component. We also used the same procedure explained above, but without the Coulomb gauge. Comparing z-component in both equation systems, we concluded that there are two possible solutions. We suggest using a 2\(\frac {1}{2}\)-D magnetic field configuration instead of a 2-D, when working with kinetic theory or magnetostatic equilibrium to derive the GS equation. We clarified that there is no relationship between the Coulomb gauge and the magnetic field dimensionality. In this problem, the invariant axis condition is imposed, which means that \(\vec {\nabla }\cdot \vec {A}\) is independent of z, i.e., \(\vec {\nabla }\cdot \vec {A}\) could have any value in which an invariant axis is a sufficient condition to obtain the GS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Al-Haddad, I.I. Roussev, C. Möstl, C. Jacobs, N. Lugaz, S. Poedts, C.J. Farrugia, On the internal structure of the magnetic field in magnetic clouds and interplanetary coronal mass ejections: Writhe versus twist. Astrophys. J. Lett. 738(2), L18 (2011)

    Article  ADS  Google Scholar 

  2. D. Du, C. Wang, Q. Hu, Propagation and evolution of a magnetic cloud from ACE to Ulysses. J. Geophys. Res. 112(A9) (2007)

  3. H. Hasegawa, R. Nakamura, M. Fujimoto, V.A. Sergeev, E.A. Lucek, H. Reme, Y. Khotyaintsev, Reconstruction of a bipolar magnetic signature in an earthward jet in the tail: Flux rope or 3D guide-field reconnection? J. Geophys. Res. 112(A11), A11206 (2007)

    Article  ADS  Google Scholar 

  4. H. Hasegawa, B. Sonnerup, C. Owen, B. Klecker, G. Paschmann, A. Balogh, H. Reme, The structure of flux transfer events recovered from cluster data. Ann. Geophys. 24(2), 603–618 (2006)

    Article  ADS  Google Scholar 

  5. H. Hasegawa, B.U.Ö. Sonnerup, B. Klecker, G. Paschmann, M. W. Dunlop, H. Reme, Optimal reconstruction of magnetopause structures from cluster data. Ann. Geophys. 23, 973–982 (2005)

    Article  ADS  Google Scholar 

  6. L.-N. Hau, B.U.Ö. Sonnerup, Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104(A4), 6899–6917 (1999)

    Article  ADS  Google Scholar 

  7. Q. Hu, C.W. Smith, N.F. Ness, R.M. Skoug, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res. Space. 109, 3102 (2004)

    Article  ADS  Google Scholar 

  8. Q. Hu, B. Sonnerup, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. 107(A7), 1142 (2002)

    Article  Google Scholar 

  9. Q. Hu, B.U.Ö. Sonnerup, Magnetopause transects from two spacecraft: a comparison. Geophys. Res. Lett. 27(10), 1443–1446 (2000)

    Article  ADS  Google Scholar 

  10. Q. Hu, B.U.Ö. Sonnerup, Reconstruction of magnetic flux ropes in the solar wind. J. Geophys. Res. 28(3), 467–470 (2001)

    Google Scholar 

  11. Q. Hu, B.U.Ö. Sonnerup, Reconstruction of two-dimensional structures in the magnetopause: Method improvements. J. Geophys. Res. 108(A1), 1011 (2003)

    Article  Google Scholar 

  12. A. Isavnin, E. Kilpua, H. Koskinen, Grad-Shafranov reconstruction of magnetic clouds: overview and improvements. Sol. Phys. 273(1), 205–219 (2011)

    Article  ADS  Google Scholar 

  13. A.V. Khrabrov, B.U.Ö. Sonnerup, DeHoffmann-Teller analysis. ISSI Sci. Rep. Ser. 1, 221–248 (1998)

    ADS  Google Scholar 

  14. A.T.Y. Lui, Grad-Shafranov reconstruction of magnetic flux ropes in the near-Earth space. Space. Sci. Rev. 158, 43–68 (2011)

    Article  ADS  Google Scholar 

  15. A.T.Y. Lui, D.G. Sibeck, T. Phan, V. Angelopoulos, J. McFadden, C. Carlson, D. Larson, J. Bonnell, K.-H. Glassmeier, S. Frey, Reconstruction of a magnetic flux rope from THEMIS observations. Geophys. Res. Lett. 351, 17 (2008)

    Google Scholar 

  16. C. Möstl, Modeling magnetic clouds using multi-spacecraft observations. Ph.D thesis, Institut für Physik Institutsbereich Geophysik, Astrophysik und Meteorologie (2009)

  17. A. Ojeda González, M.O. Domingues, O. Mendes, M. Kaibara, A. Prestes, Grad-Shafranov reconstruction: overview and improvement of the numerical solution used in space physics. Braz. J. Phys. (2015)

  18. P. Riley, J. Linker, R. Lionello, Z. Mikic, D. Odstrcil, M. Hidalgo, C. Cid, Q. Hu, R. Lepping, B. Lynch, A. Rees, Fitting flux ropes to a global {MHD} solution: a comparison of techniques. J. Atmos. Sol.-Terr. Phys. 66(15-16), 1321–1331 (2004). Towards an integrated model of the space weather system

    Article  ADS  Google Scholar 

  19. B.U.Ö. Sonnerup, M. Guo, Magnetopause transects. Geophys. Res. Lett. 23(25), 3679–3682 (1996)

    Article  ADS  Google Scholar 

  20. B.U.Ö. Sonnerup, H. Hasegawa, G. Paschmann, Anatomy of a flux transfer event seen by cluster. Geophys. Res. Lett. 31, L11803–L11803 (2004)

    Article  ADS  Google Scholar 

  21. B.U.Ö. Sonnerup, H. Hasegawa, W.-L. Teh, L.-N. Hau, Grad-Shafranov reconstruction: an overview. J. Geophys. Res. 111(A09204), 1–12 (2006)

    Google Scholar 

  22. W.-L. Teh, A study of two-dimensional magnetopause structure based on Grad-Shafranov reconstruction method. Ph.D. thesis, Institute of Space Science, National Central University (2007)

  23. W.-L. Teh, L.-N. Hau, Evidence for pearl-like magnetic island structures at dawn and dusk side magnetopause. Earth Planets Space. 56, L681 (2004)

    Article  ADS  Google Scholar 

  24. W.-L. Teh, L.-N. Hau, Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985. J. Geophys. Res. 102(A8), A08207 (2007)

    ADS  Google Scholar 

  25. P.H. Yoon, A.T.Y. Lui, A class of exact two-dimensional kinetic current sheet equilibria. J. Geophys. Res. 110(A1), A01202 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FVE (Fundação Valeparaibana de Ensino)-UNIVAP and CNPq (grant 301441/2013-8). We are very grateful by the excellent comments (questions and ideas to improve the text) raised by the anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ojeda González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, A.O., Prestes, A. & Laurindo Sousa, A.N. Discussion About the Magnetic Field Dimensionality, Invariant Axis Condition, and Coulomb Gauge to Solve the Grad-Shafranov Equation. Braz J Phys 46, 408–414 (2016). https://doi.org/10.1007/s13538-016-0422-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0422-7

Keywords

Navigation